論文の概要: Attention-based UAV Trajectory Optimization for Wireless Power Transfer-assisted IoT Systems
- arxiv url: http://arxiv.org/abs/2502.17517v1
- Date: Sun, 23 Feb 2025 02:57:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:38.250425
- Title: Attention-based UAV Trajectory Optimization for Wireless Power Transfer-assisted IoT Systems
- Title(参考訳): 無線電力伝達支援IoTシステムのための注意に基づくUAV軌道最適化
- Authors: Li Dong, Feibo Jiang, Yubo Peng,
- Abstract要約: 本稿では,グラフトランスを用いた意図に基づくUAVトラジェクトリ最適化フレームワークを提案する。
ATOMでは、すべてのIoTDの自己アテンション特性を計算するためにグラフエンコーダが使用される。
TENMAは改良されたアクター・クリティカル法を用いてATOMを訓練し、システムの真の報酬をベースラインとして適用して、批評家ネットワークのばらつきを低減する。
- 参考スコア(独自算出の注目度): 19.680892841701674
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) in Wireless Power Transfer (WPT)-assisted Internet of Things (IoT) systems face the following challenges: limited resources and suboptimal trajectory planning. Reinforcement learning-based trajectory planning schemes face issues of low search efficiency and learning instability when optimizing large-scale systems. To address these issues, we present an Attention-based UAV Trajectory Optimization (AUTO) framework based on the graph transformer, which consists of an Attention Trajectory Optimization Model (ATOM) and a Trajectory lEarNing Method based on Actor-critic (TENMA). In ATOM, a graph encoder is used to calculate the self-attention characteristics of all IoTDs, and a trajectory decoder is developed to optimize the number and trajectories of UAVs. TENMA then trains the ATOM using an improved Actor-Critic method, in which the real reward of the system is applied as the baseline to reduce variances in the critic network. This method is suitable for high-quality and large-scale multi-UAV trajectory planning. Finally, we develop numerous experiments, including a hardware experiment in the field case, to verify the feasibility and efficiency of the AUTO framework.
- Abstract(参考訳): 無線送電(WPT)を利用したIoT(Internet of Things)システムにおける無人航空機(UAV)は、リソースの制限と準最適軌道計画という課題に直面している。
強化学習に基づく軌道計画手法は,大規模システムの最適化における探索効率の低下と学習不安定性の問題に直面する。
これらの問題に対処するために,ATOM(Attention Trajectory Optimization Model)とTENMA(Attention-critic)に基づくTorjectory lEarNing Methodからなるグラフトランスフォーマを用いた,Attention-based UAV Trajectory Optimization (AUTO)フレームワークを提案する。
ATOMでは、すべてのIoTDの自己アテンション特性を計算するためにグラフエンコーダを使用し、UAVの数と軌道を最適化するために軌道デコーダを開発した。
TENMAは改良されたアクター・クリティカル法を用いてATOMを訓練し、システムの真の報酬をベースラインとして適用して、批評家ネットワークのばらつきを低減する。
この方法は、高品質で大規模なマルチUAV軌道計画に適している。
最後に、AUTOフレームワークの有効性と効率を検証するために、フィールドケースにおけるハードウェア実験を含む多数の実験を開発する。
関連論文リスト
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - When UAV Meets Federated Learning: Latency Minimization via Joint Trajectory Design and Resource Allocation [47.20867891501245]
フェデレートラーニング(FL)は、無線ネットワーク上で機械学習モデルをトレーニングするための重要なソリューションとして登場した。
本研究では,無人航空機(UAV)を移動FLサーバとして展開し,FLの訓練プロセスを強化する,革新的なアプローチを提案する。
全体としてのトレーニング効率を改善するために,帯域割り当て,演算周波数,UAVとIoTデバイスの両方の送信電力,UAVの軌道を最適化して遅延問題を定式化する。
論文 参考訳(メタデータ) (2024-12-10T11:39:27Z) - Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model [4.273341750394231]
我々は、UAVの軌道を共同で設計し、インターネット・オブ・シングス・ネットワークでクラスタ・ヘッドを選択するという問題を定式化する。
本稿では,シーケンス・ツー・シーケンス・ニューラルネットワークで表されるポリシーを効果的に学習できるシーケンシャルモデル戦略を備えた,新しい深層強化学習(DRL)を提案する。
シミュレーションにより,提案したDRL法は,より少ないエネルギー消費を必要とするUAVの軌道を見つけることができることを示した。
論文 参考訳(メタデータ) (2021-12-01T07:59:53Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Reinforcement Learning to Optimize the Logistics Distribution Routes of
Unmanned Aerial Vehicle [0.0]
本稿では,複数のノフライゾーンを含む複雑な環境下でUAVの経路計画を実現するための改良手法を提案する。
その結果,このような複雑な状況に適応するモデルの有効性と効率性が示された。
論文 参考訳(メタデータ) (2020-04-21T09:42:03Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。