論文の概要: Towards Conditioning Clinical Text Generation for User Control
- arxiv url: http://arxiv.org/abs/2502.17571v1
- Date: Mon, 24 Feb 2025 19:00:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 18:41:13.631846
- Title: Towards Conditioning Clinical Text Generation for User Control
- Title(参考訳): ユーザ制御のための臨床テキスト生成の条件付けに向けて
- Authors: Osman Alperen Koraş, Rabi Bahnan, Jens Kleesiek, Amin Dada,
- Abstract要約: 本稿では,Large Language Models (LLMs) を人間のプロキシとして用いて,認知作業量の増加を伴わずに,クリニカルコントロールのためのLLMを条件とした自動データセット拡張について検討する。
我々は、より効率的なトレーニングにより、従来の提案よりもシンプルな方法で新しい最先端の成果を達成し、強化トレーニングなしで9%の相対的な改善を実現し、データセット拡張で最大34%を達成した。
- 参考スコア(独自算出の注目度): 2.009205898486993
- License:
- Abstract: Deploying natural language generation systems in clinical settings remains challenging despite advances in Large Language Models (LLMs), which continue to exhibit hallucinations and factual inconsistencies, necessitating human oversight. This paper explores automated dataset augmentation using LLMs as human proxies to condition LLMs for clinician control without increasing cognitive workload. On the BioNLP ACL'24 Discharge Me! Shared Task, we achieve new state-of-the-art results with simpler methods than prior submissions through more efficient training, yielding a 9\% relative improvement without augmented training and up to 34\% with dataset augmentation. Preliminary human evaluation further supports the effectiveness of our approach, highlighting the potential of augmenting clinical text generation for control to enhance relevance, accuracy, and factual consistency.
- Abstract(参考訳): 大規模言語モデル(LLM)の進歩にもかかわらず、臨床環境での自然言語生成システムの展開は依然として困難であり、幻覚や現実的な矛盾を呈し、人間の監視を必要としている。
本稿では,LLMをヒトプロキシとして用いた自動データセット拡張について検討し,認知負荷を増大させることなく臨床管理にLLMを適用した。
BioNLP ACL'24 Discharge Me!
共有タスクでは、より効率的なトレーニングにより、従来の提案よりもシンプルな手法で新しい最先端の成果を達成し、強化トレーニングなしで9倍の相対的な改善を実現し、データセット拡張で最大34倍の精度で達成する。
予備的人的評価は、我々のアプローチの有効性をさらに支援し、関連性、正確性、事実整合性を高めるために、臨床テキスト生成を制御するために増強する可能性を強調した。
関連論文リスト
- PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
大規模言語モデル(LLM)は、複雑なコミュニケーションメトリクスを評価するための新しいアプローチを提供する。
LLMは受動的センシングシステムとジャスト・イン・タイム・イン・タイム・イン・イン・介入システムとの統合を通じて、分野を前進させる可能性を提供する。
本研究は, 言語, 文脈内学習, 推論能力を活用した緩和ケアコミュニケーションの質評価手法としてLLMについて検討する。
論文 参考訳(メタデータ) (2024-09-23T16:39:12Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - Beyond Self-Consistency: Ensemble Reasoning Boosts Consistency and Accuracy of LLMs in Cancer Staging [0.33554367023486936]
がんのステージング状態は臨床報告で確認できるが、抽出するには自然言語処理が必要である。
臨床指向の大規模言語モデルの進歩により、アルゴリズムの訓練に多大な努力を払わずに、そのような状態を抽出することが期待されている。
本研究では,モデル生成の一貫性向上を目的としたアンサンブル推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T19:34:35Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
ジェネレーティブ・大型言語モデル(LLM)は医療において大きな可能性を秘めている。
本研究は, シミュレーション3次医療センターにおいて, 自律型エージェントとして機能するLSMの可能性を評価した。
論文 参考訳(メタデータ) (2024-01-05T15:09:57Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
臨床テキストマイニングにおけるOpenAIのChatGPTの可能性を検討する。
本稿では,高品質な合成データを大量に生成する新たな学習パラダイムを提案する。
提案手法により,下流タスクの性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-03-08T03:56:31Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。