論文の概要: Provable Model-Parallel Distributed Principal Component Analysis with Parallel Deflation
- arxiv url: http://arxiv.org/abs/2502.17615v1
- Date: Mon, 24 Feb 2025 20:02:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:04.929785
- Title: Provable Model-Parallel Distributed Principal Component Analysis with Parallel Deflation
- Title(参考訳): 並列デフレを用いた確率モデル並列分散主成分分析
- Authors: Fangshuo Liao, Wenyi Su, Anastasios Kyrillidis,
- Abstract要約: 各作業者が個別の固有ベクトルをターゲットにした分散PCAフレームワークについて検討し、「上位」と見なされるピアによって提供される中間解から更新することでその解を洗練する。
提案するフレームワークは,最先端のモデル並列PCAソルバであるEigenGame-$mu$に匹敵する性能を提供する。
- 参考スコア(独自算出の注目度): 9.613011825024476
- License:
- Abstract: We study a distributed Principal Component Analysis (PCA) framework where each worker targets a distinct eigenvector and refines its solution by updating from intermediate solutions provided by peers deemed as "superior". Drawing intuition from the deflation method in centralized eigenvalue problems, our approach breaks the sequential dependency in the deflation steps and allows asynchronous updates of workers, while incurring only a small communication cost. To our knowledge, a gap in the literature -- the theoretical underpinning of such distributed, dynamic interactions among workers -- has remained unaddressed. This paper offers a theoretical analysis explaining why, how, and when these intermediate, hierarchical updates lead to practical and provable convergence in distributed environments. Despite being a theoretical work, our prototype implementation demonstrates that such a distributed PCA algorithm converges effectively and in scalable way: through experiments, our proposed framework offers comparable performance to EigenGame-$\mu$, the state-of-the-art model-parallel PCA solver.
- Abstract(参考訳): 分散主成分分析(PCA)フレームワークについて検討し,各作業員が個別の固有ベクトルを対象とし,ピアが「上位」と見なす中間解から更新することでその解を洗練させる。
集中的固有値問題におけるデフレ法からの直感を引き出すと、我々の手法はデフレのステップにおける逐次的依存を破り、作業者の非同期更新を可能にし、通信コストは少ない。
我々の知る限りでは、労働者間の分散的動的相互作用の理論的基盤となる文学のギャップは、まだ未解決のままである。
本稿では, この中間的階層的更新が分散環境における実用的かつ実証可能な収束をもたらす理由, 方法, およびいつ, について理論的解析を行う。
実験により,提案手法はEigenGame-$\mu$, 最先端のモデル並列PCAソルバに匹敵する性能を提供する。
関連論文リスト
- Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
データ生成プロセスにおける因果関係を記述するために,構造因果モデル(SCM)を構築した。
さらに、スプリアス相関に基づくメカニズムを徹底的に分析する。
そこで本研究では,OOD一般化における共起バイアスの制御について,相対性スコア重み付き推定器を導入して提案する。
論文 参考訳(メタデータ) (2024-06-17T13:22:00Z) - Approximate Global Convergence of Independent Learning in Multi-Agent Systems [19.958920582022664]
本稿では,Q$ラーニングとNatural Act-criticの2つの代表的なアルゴリズムについて,価値ベースのフレームワークとポリシーベースのフレームワークで検討する。
結果は、大域収束を達成する際のILの基本的な限界を特徴づけるエラー項まで、$tildemathcalO(epsilon-2)$のサンプル複雑性を示唆している。
論文 参考訳(メタデータ) (2024-05-30T08:20:34Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
非線形で非同定可能な構造関数が存在する場合でも分布の一般化を可能にする不変性という強い概念を導入する。
フレキシブルな機械学習手法を用いて,ブースト制御関数(BCF)を推定する制御Twicingアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-09T15:43:46Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse
Additive Models with Feature Division and Decorrelation [16.232378903482143]
本稿では,高次元のスパース加法モデルの下で特徴を分割する分散統計学習アルゴリズムDDAC-SpAMを提案する。
提案アルゴリズムの有効性と有効性は, 合成データと実データの両方に関する理論的解析と実験結果によって実証される。
提案手法は, スパース加法モデルと, 広範囲の領域で有望な応用を実現するための実用的ソリューションを提供する。
論文 参考訳(メタデータ) (2022-05-16T18:31:03Z) - Multi-Task Learning on Networks [0.0]
マルチタスク学習コンテキストで発生する多目的最適化問題は、特定の特徴を持ち、アドホックな方法を必要とする。
この論文では、入力空間の解は、関数評価に含まれる知識をカプセル化した確率分布として表現される。
確率分布のこの空間では、ワッサーシュタイン距離によって与えられる計量が与えられ、モデルが目的関数に直接依存しないような新しいアルゴリズムMOEA/WSTを設計することができる。
論文 参考訳(メタデータ) (2021-12-07T09:13:10Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。