Socratic: Enhancing Human Teamwork via AI-enabled Coaching
- URL: http://arxiv.org/abs/2502.17643v1
- Date: Mon, 24 Feb 2025 20:45:43 GMT
- Title: Socratic: Enhancing Human Teamwork via AI-enabled Coaching
- Authors: Sangwon Seo, Bing Han, Rayan E. Harari, Roger D. Dias, Marco A. Zenati, Eduardo Salas, Vaibhav Unhelkar,
- Abstract summary: Socratic is a novel AI system that complements human coaches by providing real-time guidance during task execution.<n>We validated Socratic through two human subject experiments involving dyadic collaboration.<n>The results demonstrate that the system significantly enhances team performance with minimal interventions.
- Score: 6.231141663160322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coaches are vital for effective collaboration, but cost and resource constraints often limit their availability during real-world tasks. This limitation poses serious challenges in life-critical domains that rely on effective teamwork, such as healthcare and disaster response. To address this gap, we propose and realize an innovative application of AI: task-time team coaching. Specifically, we introduce Socratic, a novel AI system that complements human coaches by providing real-time guidance during task execution. Socratic monitors team behavior, detects misalignments in team members' shared understanding, and delivers automated interventions to improve team performance. We validated Socratic through two human subject experiments involving dyadic collaboration. The results demonstrate that the system significantly enhances team performance with minimal interventions. Participants also perceived Socratic as helpful and trustworthy, supporting its potential for adoption. Our findings also suggest promising directions both for AI research and its practical applications to enhance human teamwork.
Related papers
- Unraveling Human-AI Teaming: A Review and Outlook [2.3396455015352258]
Artificial Intelligence (AI) is advancing at an unprecedented pace, with clear potential to enhance decision-making and productivity.
Yet, the collaborative decision-making process between humans and AI remains underdeveloped, often falling short of its transformative possibilities.
This paper explores the evolution of AI agents from passive tools to active collaborators in human-AI teams, emphasizing their ability to learn, adapt, and operate autonomously in complex environments.
arXiv Detail & Related papers (2025-04-08T07:37:25Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition [61.91764883512776]
We introduce an innovative PEFT method, TeamLoRA, consisting of a collaboration and competition module for experts.
By doing so, TeamLoRA connects the experts as a "Team" with internal collaboration and competition, enabling a faster and more accurate PEFT paradigm for multi-task learning.
arXiv Detail & Related papers (2024-08-19T09:58:53Z) - Collective Attention in Human-AI Teams [4.312803416185713]
The presence of an AI assistant significantly impacts team collective attention by modulating various aspects of shared cognition.
This study contributes to human-AI teaming research by highlighting collective attention as a central mechanism through which AI systems in team settings influence team performance.
arXiv Detail & Related papers (2024-07-03T13:46:00Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
We propose a method for a collaborative system that remains safe by having a human making decisions.
Ardent enables efficient and effective decision-making by adapting to individual preferences for explanations.
arXiv Detail & Related papers (2023-11-13T16:00:16Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
We argue that human-AI collaboration should be interactive, with humans monitoring the work of AI agents and providing feedback that the agent can understand and utilize.
In this work, we explore these directions using the challenging task defined by the IGLU competition, an interactive grounded language understanding task in a MineCraft-like world.
arXiv Detail & Related papers (2023-04-21T05:37:59Z) - Automated Task-Time Interventions to Improve Teamwork using Imitation
Learning [5.423490734916741]
We present TIC: an automated intervention approach for improving coordination between team members.
We first learn a generative model of team behavior from past task execution data.
Next, it utilizes the learned generative model and team's task objective (shared reward) to algorithmically generate execution-time interventions.
arXiv Detail & Related papers (2023-03-01T11:09:06Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
This paper addresses whether the Dunning-Kruger Effect (DKE) can hinder appropriate reliance on AI systems.
DKE is a metacognitive bias due to which less-competent individuals overestimate their own skill and performance.
We found that participants who overestimate their performance tend to exhibit under-reliance on AI systems.
arXiv Detail & Related papers (2023-01-25T14:26:10Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
We guide the curriculum reinforcement learning results towards a preferred performance level that is neither too hard nor too easy via learning from the human decision process.
Our system is highly parallelizable, making it possible for a human to train large-scale reinforcement learning applications.
It shows reinforcement learning performance can successfully adjust in sync with the human desired difficulty level.
arXiv Detail & Related papers (2022-08-04T23:53:51Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.