CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
- URL: http://arxiv.org/abs/2502.17648v4
- Date: Sat, 05 Apr 2025 15:05:48 GMT
- Title: CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
- Authors: Lei Cheng, Lihao Guo, Tianya Zhang, Tam Bang, Austin Harris, Mustafa Hajij, Mina Sartipi, Siyang Cao,
- Abstract summary: CalibRefine is a fully automatic, targetless, and online calibration framework.<n>We show that CalibRefine delivers high-precision calibration results with minimal human involvement.<n>Our findings highlight how robust object-level feature matching, together with iterative and self-supervised attention-based adjustments, enables consistent sensor fusion in complex, real-world conditions.
- Score: 5.069968819561576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate multi-sensor calibration is essential for deploying robust perception systems in applications such as autonomous driving, robotics, and intelligent transportation. Existing LiDAR-camera calibration methods often rely on manually placed targets, preliminary parameter estimates, or intensive data preprocessing, limiting their scalability and adaptability in real-world settings. In this work, we propose a fully automatic, targetless, and online calibration framework, CalibRefine, which directly processes raw LiDAR point clouds and camera images. Our approach is divided into four stages: (1) a Common Feature Discriminator that trains on automatically detected objects--using relative positions, appearance embeddings, and semantic classes--to generate reliable LiDAR-camera correspondences, (2) a coarse homography-based calibration, (3) an iterative refinement to incrementally improve alignment as additional data frames become available, and (4) an attention-based refinement that addresses non-planar distortions by leveraging a Vision Transformer and cross-attention mechanisms. Through extensive experiments on two urban traffic datasets, we show that CalibRefine delivers high-precision calibration results with minimal human involvement, outperforming state-of-the-art targetless methods and remaining competitive with, or surpassing, manually tuned baselines. Our findings highlight how robust object-level feature matching, together with iterative and self-supervised attention-based adjustments, enables consistent sensor fusion in complex, real-world conditions without requiring ground-truth calibration matrices or elaborate data preprocessing. Code is available at \href{https://github.com/radar-lab/Lidar\_Camera\_Automatic\_Calibration}{https://github.com/radar-lab/Lidar\_Camera\_Automatic\_Calibration}
Related papers
- What Really Matters for Learning-based LiDAR-Camera Calibration [50.2608502974106]
This paper revisits the development of learning-based LiDAR-Camera calibration.<n>We identify the critical limitations of regression-based methods with the widely used data generation pipeline.<n>We also investigate how the input data format and preprocessing operations impact network performance.
arXiv Detail & Related papers (2025-01-28T14:12:32Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
Hand-eye calibration involves estimating the transformation between the camera and the robot.
Recent advancements in deep learning offer markerless techniques, but they present challenges.
We propose Kalib, an automatic and universal markerless hand-eye calibration pipeline.
arXiv Detail & Related papers (2024-08-20T06:03:40Z) - YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment.
This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration.
arXiv Detail & Related papers (2024-07-25T13:44:49Z) - CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network [11.602943913324653]
CalibFormer is an end-to-end network for automatic LiDAR-camera calibration.
We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations.
Our method achieved a mean translation error of $0.8751 mathrmcm$ and a mean rotation error of $0.0562 circ$ on the KITTI dataset.
arXiv Detail & Related papers (2023-11-26T08:59:30Z) - From Chaos to Calibration: A Geometric Mutual Information Approach to
Target-Free Camera LiDAR Extrinsic Calibration [4.378156825150505]
We propose a target free extrinsic calibration algorithm that requires no ground truth training data.
We demonstrate our proposed improvement using the KITTI and KITTI-360 fisheye data set.
arXiv Detail & Related papers (2023-11-03T13:30:31Z) - Continuous Online Extrinsic Calibration of Fisheye Camera and LiDAR [7.906477322731106]
An accurate extrinsic calibration is required to fuse the camera and LiDAR data into a common spatial reference frame required by high-level perception functions.
There is a need for continuous online extrinsic calibration algorithms which can automatically update the value of the camera-LiDAR calibration during the life of the vehicle using only sensor data.
We propose using mutual information between the camera image's depth estimate, provided by commonly available monocular depth estimation networks, and the LiDAR pointcloud's geometric distance as a optimization metric for extrinsic calibration.
arXiv Detail & Related papers (2023-06-22T23:16:31Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Automated Static Camera Calibration with Intelligent Vehicles [58.908194559319405]
We present a robust calibration method for automated geo-referenced camera calibration.
Our method requires a calibration vehicle equipped with a combined filtering/RTK receiver and an inertial measurement unit (IMU) for self-localization.
Our method does not require any human interaction with the information recorded by both the infrastructure and the vehicle.
arXiv Detail & Related papers (2023-04-21T08:50:52Z) - LCE-Calib: Automatic LiDAR-Frame/Event Camera Extrinsic Calibration With
A Globally Optimal Solution [10.117923901732743]
The combination of LiDARs and cameras enables a mobile robot to perceive environments with multi-modal data.
Traditional frame cameras are sensitive to changing illumination conditions, motivating us to introduce novel event cameras.
This paper proposes an automatic checkerboard-based approach to calibrate extrinsics between a LiDAR and a frame/event camera.
arXiv Detail & Related papers (2023-03-17T08:07:56Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
This paper presents the first direct calibration method between event cameras and lidars.
It removes dependencies on frame-based camera intermediaries and/or highly-accurate hand measurements.
arXiv Detail & Related papers (2022-07-03T11:05:45Z) - CRLF: Automatic Calibration and Refinement based on Line Feature for
LiDAR and Camera in Road Scenes [16.201111055979453]
We propose a novel method to calibrate the extrinsic parameter for LiDAR and camera in road scenes.
Our method introduces line features from static straight-line-shaped objects such as road lanes and poles in both image and point cloud.
We conduct extensive experiments on KITTI and our in-house dataset, quantitative and qualitative results demonstrate the robustness and accuracy of our method.
arXiv Detail & Related papers (2021-03-08T06:02:44Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Automatic LiDAR Extrinsic Calibration System using Photodetector and
Planar Board for Large-scale Applications [110.32028864986918]
This study proposes a new concept of a target board with embedded photodetector arrays, named the PD-target system, to find the precise position of the correspondence laser beams on the target surface.
The experimental evaluation of the proposed system on low-resolution LiDAR showed that the LiDAR offset pose can be estimated within 0.1 degree and 3 mm levels of precision.
arXiv Detail & Related papers (2020-08-24T16:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.