論文の概要: Conformal Prediction Under Generalized Covariate Shift with Posterior Drift
- arxiv url: http://arxiv.org/abs/2502.17744v1
- Date: Tue, 25 Feb 2025 00:46:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:32.861926
- Title: Conformal Prediction Under Generalized Covariate Shift with Posterior Drift
- Title(参考訳): 後部ドリフトを伴う一般化共変量シフトによる等方性予測
- Authors: Baozhen Wang, Xingye Qiao,
- Abstract要約: 転送学習アプローチは、関連するソースドメインからの知識を活用して、ターゲットドメインでの学習性能を改善することを目的としている。
本稿では,転帰学習における新たな分布仮定の下で,共形予測と呼ばれる特定の分類問題について検討する。
- 参考スコア(独自算出の注目度): 3.7307776333361122
- License:
- Abstract: In many real applications of statistical learning, collecting sufficiently many training data is often expensive, time-consuming, or even unrealistic. In this case, a transfer learning approach, which aims to leverage knowledge from a related source domain to improve the learning performance in the target domain, is more beneficial. There have been many transfer learning methods developed under various distributional assumptions. In this article, we study a particular type of classification problem, called conformal prediction, under a new distributional assumption for transfer learning. Classifiers under the conformal prediction framework predict a set of plausible labels instead of one single label for each data instance, affording a more cautious and safer decision. We consider a generalization of the \textit{covariate shift with posterior drift} setting for transfer learning. Under this setting, we propose a weighted conformal classifier that leverages both the source and target samples, with a coverage guarantee in the target domain. Theoretical studies demonstrate favorable asymptotic properties. Numerical studies further illustrate the usefulness of the proposed method.
- Abstract(参考訳): 多くの統計的学習の実際の応用において、十分な数のトレーニングデータを集めることは、しばしば高価、時間を要する、あるいは非現実的である。
この場合、対象領域における学習性能を改善するために、関連するソースドメインからの知識を活用することを目的とした転送学習アプローチの方が有益である。
様々な分布仮定のもとに多くの伝達学習法が開発されている。
本稿では,転帰学習における新たな分布仮定の下で,共形予測と呼ばれる特定のタイプの分類問題について検討する。
コンフォーマル予測フレームワークの下での分類器は、各データインスタンスの1つのラベルではなく、可塑性ラベルのセットを予測し、より慎重で安全な決定を可能にする。
転送学習のための後流設定付きtextit{covariate shiftの一般化を検討する。
本設定では,ソースとターゲットのサンプルの両方を活用する重み付き共形分類器を提案し,対象ドメインのカバレッジを保証する。
理論的研究は好適な漸近性を示す。
さらに,提案手法の有用性について考察した。
関連論文リスト
- Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift [9.530897053573186]
本稿では,周辺情報,すなわちデータポイントの局所的構造を利用した新しい異種性尺度を提案する。
提案手法を用いて過大な誤差を特徴付けるとともに,従来の手法と比較して高速あるいは競合的な収束率を示す。
論文 参考訳(メタデータ) (2024-05-27T07:55:27Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - An Information-theoretical Approach to Semi-supervised Learning under
Covariate-shift [24.061858945664856]
半教師あり学習における一般的な前提は、ラベル付き、ラベルなし、テストデータが同じ分布から引き出されることである。
本稿では,この問題に対処可能な半教師付き学習アルゴリズムを提案する。
また,このフレームワークはエントロピーの最小化や擬似ラベル付けなど,一般的な手法を復元する。
論文 参考訳(メタデータ) (2022-02-24T14:25:14Z) - Domain Conditional Predictors for Domain Adaptation [3.951376400628575]
本稿では,入力データに依存することに加えて,基礎となるデータ生成分布に対する情報を利用する条件付きモデリング手法を検討する。
このようなアプローチは、現在のドメイン適応手法よりも一般的に適用可能であると論じる。
論文 参考訳(メタデータ) (2021-06-25T22:15:54Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
ディープラーニングシステムの安全なデプロイには,トレーニング中に見られるものと異なる入力のカテゴリに直面した場合,確実な予測を控えることが重要な要件である。
本論文では, 吸収の原理を用いた分布異常検出の簡便かつ高効率な手法を提案する。
論文 参考訳(メタデータ) (2021-05-15T00:46:11Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
Adaptive Semantic Segmentation [49.295165476818866]
本稿では、意味的セグメンテーションの文脈において、ソースドメインからターゲットドメインへの知識伝達の教師なし領域適応に焦点を当てる。
既存のアプローチでは、通常、擬似ラベルを未ラベルのターゲットドメインデータを完全に活用するための基礎的真理とみなす。
本稿では,擬似ラベル学習の修正のために,学習中の予測の不確かさを明示的に推定することを提案する。
論文 参考訳(メタデータ) (2020-03-08T12:37:19Z) - A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation [142.31610972922067]
この研究は、特にターゲットドメインのクラスラベルがソースドメインのサブセットである場合に、教師なしのドメイン適応問題に対処する。
本稿では,ドメイン逆境学習に基づく新しいドメイン適応手法 BA$3$US を提案し,BAA(Ba balanced Adversarial Alignment)とAUS(Adaptive Uncertainty Suppression)の2つの新しい手法を提案する。
複数のベンチマーク実験の結果、BA$3$USが部分的なドメイン適応タスクの最先端を超越していることが示されている。
論文 参考訳(メタデータ) (2020-03-05T11:37:06Z) - A Primer on Domain Adaptation [0.0]
教師付き機械学習は、アルゴリズムを訓練するために使用されるソースサンプルの分布が、予測を行うはずのターゲットサンプルの1つと同じであると仮定する。
数え切れない数のメソッドと、明確で普遍的に受け入れられる用語の欠如は、しかしながら、このトピックを新参者にとっておそろしいものにすることができる。
論文 参考訳(メタデータ) (2020-01-27T08:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。