論文の概要: FinP: Fairness-in-Privacy in Federated Learning by Addressing Disparities in Privacy Risk
- arxiv url: http://arxiv.org/abs/2502.17748v2
- Date: Thu, 02 Oct 2025 20:59:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 14:21:29.691922
- Title: FinP: Fairness-in-Privacy in Federated Learning by Addressing Disparities in Privacy Risk
- Title(参考訳): FinP:プライバシリスクの格差に対処するフェデレーション学習の公正性
- Authors: Tianyu Zhao, Mahmoud Srewa, Salma Elmalaki,
- Abstract要約: FinPは、プライバシーリスクの格差に対処するために特別に設計された、新しいフレームワークである。
ソース推論攻撃(SIA)に対する不均等な脆弱性を緩和する
実用性への影響を最小限に抑えて、プライバシの公平性を改善する。
- 参考スコア(独自算出の注目度): 2.840505903487544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring fairness in machine learning extends to the critical dimension of privacy, particularly in human-centric federated learning (FL) settings where decentralized data necessitates an equitable distribution of privacy risk across clients. This paper introduces FinP, a novel framework specifically designed to address disparities in privacy risk by mitigating disproportionate vulnerability to source inference attacks (SIA). FinP employs a two-pronged strategy: (1) server-side adaptive aggregation, which dynamically adjusts client contributions to the global model to foster fairness, and (2) client-side regularization, which enhances the privacy robustness of individual clients. This comprehensive approach directly tackles both the symptoms and underlying causes of privacy unfairness in FL. Extensive evaluations on the Human Activity Recognition (HAR) and CIFAR-10 datasets demonstrate FinP's effectiveness, achieving improvement in fairness-in-privacy on HAR and CIFAR-10 with minimal impact on utility. FinP improved group fairness with respect to disparity in privacy risk using equal opportunity in CIFAR-10 by 57.14% compared to the state-of-the-art. Furthermore, FinP significantly mitigates SIA risks on CIFAR-10, underscoring its potential to establish fairness in privacy within FL systems without compromising utility.
- Abstract(参考訳): マシンラーニングにおける公正性の確保は、特に、クライアント間のプライバシーリスクの公平な分散を必要とする、人中心のフェデレーションラーニング(FL)設定において、プライバシの重要な次元にまで拡張される。
本稿では、プライバシリスクの相違に対処するための新しいフレームワークであるFinPを紹介し、ソース推論攻撃(SIA)に対する不均衡な脆弱性を緩和する。
FinPは,(1)サーバ側適応アダプティブアグリゲーション,2)グローバルモデルへのクライアントのコントリビューションを動的に調整して公正性を向上する,2)クライアント側正規化,2)個々のクライアントのプライバシーの堅牢性を高める,という2つの戦略を採用している。
この包括的なアプローチは、FLにおけるプライバシー不公平の症状と根本原因の両方に対処する。
HAR(Human Activity Recognition)とCIFAR-10データセットの大規模な評価は、FinPの有効性を示し、実用性に最小限の影響を伴って、HARとCIFAR-10の公平性の向上を実現している。
FinPは、CIFAR-10における同等の機会を用いて、プライバシーリスクの格差に関するグループフェアネスを、最先端技術と比較して57.14%改善した。
さらに、FinPはCIFAR-10のSIAリスクを著しく軽減し、実用性を損なうことなくFLシステム内でプライバシの公平性を確立する可能性を強調している。
関連論文リスト
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles [6.3338980105224145]
既存のFLフレームワークは、プライバシ、公平性、堅牢性のバランスをとるのに苦労しているため、人口統計グループ間でのパフォーマンス格差が生じる。
この研究は、AVのためのFLベースのオブジェクト検出におけるプライバシと公正性のトレードオフについて検討し、両者を最適化する統合ソリューションであるRESFLを紹介した。
RESFLは、敵のプライバシーのゆがみと不確実性誘導された公正なアグリゲーションを取り入れている。
FACETデータセットとCARLAシミュレータ上でRESFLを評価し、様々な条件下で精度、公正性、プライバシーのレジリエンス、堅牢性を評価する。
論文 参考訳(メタデータ) (2025-03-20T15:46:03Z) - Empirical Analysis of Privacy-Fairness-Accuracy Trade-offs in Federated Learning: A Step Towards Responsible AI [6.671649946926508]
フェデレートラーニング(FL)は、データのプライバシを維持しながら機械学習を可能にするが、プライバシ保護(PP)と公正性のバランスをとるのに苦労する。
DPはプライバシーを向上するが、計算オーバーヘッドを犠牲にしてHEとSMCの公平性を懸念する一方で、不足しているグループに不均等に影響を及ぼす可能性がある。
我々の発見は、文脈に依存したトレードオフを強調し、責任あるAI原則を守り、公正性、プライバシー、公平な現実世界のアプリケーションを保証するFLシステムを設計するためのガイドラインを提供する。
論文 参考訳(メタデータ) (2025-03-20T15:31:01Z) - PA-CFL: Privacy-Adaptive Clustered Federated Learning for Transformer-Based Sales Forecasting on Heterogeneous Retail Data [47.745068077169954]
フェデレートラーニング(FL)により、小売店はプライバシを維持しながら需要予測のためのモデルパラメータを共有できる。
異種小売データの需要予測に適したプライバシ適応クラスタ型フェデレートラーニング(PA-CFL)を提案する。
論文 参考訳(メタデータ) (2025-03-15T18:07:54Z) - FedEM: A Privacy-Preserving Framework for Concurrent Utility Preservation in Federated Learning [17.853502904387376]
Federated Learning (FL)は、分散クライアント間で、ローカルデータを共有せずにモデルの協調的なトレーニングを可能にし、分散システムにおけるプライバシの問題に対処する。
適応雑音注入による制御摂動を組み込んだ新しいアルゴリズムであるフェデレートエラー最小化(FedEM)を提案する。
ベンチマークデータセットの実験結果から、FedEMはプライバシのリスクを著しく低減し、モデルの正確性を保ち、プライバシ保護とユーティリティ保護の堅牢なバランスを達成している。
論文 参考訳(メタデータ) (2025-03-08T02:48:00Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning [2.8304839563562436]
公平さとプライバシの原則を同時に遵守するマシンラーニングモデルのトレーニングとデプロイは、大きな課題となる。
本稿では,FLシナリオにおける実用性,プライバシ,公正性のバランスを探究する上で有効な,高レベルのパラメータ化アプローチであるPUFFLEを紹介する。
PUFFLEは多様なデータセット,モデル,データ分布に対して有効であり,モデルの不公平性を75%まで低減し,最悪のシナリオでは有効性を最大17%削減できることを示す。
論文 参考訳(メタデータ) (2024-07-21T17:22:18Z) - FedFDP: Fairness-Aware Federated Learning with Differential Privacy [28.58589747796768]
Federated Learning(FL)は、データサイロの課題に対処するために設計された、新興の機械学習パラダイムである。
公平性とデータプライバシに関する永続的な問題に対処するため,FedFairというフェアネスを考慮したFLアルゴリズムを提案する。
FedFairをベースとした差分プライバシーを導入し、公正性、プライバシ保護、モデルパフォーマンスのトレードオフに対処するFedFDPアルゴリズムを作成します。
論文 参考訳(メタデータ) (2024-02-25T08:35:21Z) - Toward the Tradeoffs between Privacy, Fairness and Utility in Federated
Learning [10.473137837891162]
Federated Learning(FL)は、新しいプライバシー保護分散機械学習パラダイムである。
本稿では,クライアントモデルのプライバシを保護するために,プライバシ保護フェアネスFL法を提案する。
プライバシーと公正性と実用性の関係を結論付け、これらの間にはトレードオフがある。
論文 参考訳(メタデータ) (2023-11-30T02:19:35Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - "You Can't Fix What You Can't Measure": Privately Measuring Demographic
Performance Disparities in Federated Learning [78.70083858195906]
グループメンバーシップのプライバシを保護しつつ,グループ間でのパフォーマンスの差異を測定するための,差分プライベートなメカニズムを提案する。
我々の結果は、以前の研究の示唆に反して、プライバシ保護は必ずしもフェデレーションモデルの性能格差の特定と矛盾しているわけではないことを示している。
論文 参考訳(メタデータ) (2022-06-24T09:46:43Z) - PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning [12.767527195281042]
フェデレートラーニング(FL)におけるグループフェアネスは、偏見を緩和するためには、本質的にすべてのクライアントのセンシティブな属性値を使用する必要があるため、難しい。
FLとセキュアマルチパーティ計算(MPC)と差分プライバシー(DP)を組み合わせることで、FLにおける公平性とプライバシの対立を解消できることを示す。
そこで本研究では,クロスデバイスFLにおけるグループフェアMLモデルを,完全かつ正式なプライバシ保証の下でトレーニングする方法を提案する。
論文 参考訳(メタデータ) (2022-05-23T19:26:12Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。