STQS: A Unified System Architecture for Spatial Temporal Quantum Sensing
- URL: http://arxiv.org/abs/2502.17778v2
- Date: Sun, 06 Apr 2025 21:10:49 GMT
- Title: STQS: A Unified System Architecture for Spatial Temporal Quantum Sensing
- Authors: Anastashia Jebraeilli, Chenxu Liu, Keyi Yin, Erik W Lentz, Yufei Ding, Ang Li,
- Abstract summary: We present STQS, a unified system architecture for distributed quantum sensing.<n>By employing a comprehensive gate-based framework, we systemically explore the design space of quantum sensing schemes.<n>We introduce a novel distance-based metric that compares reference states to sensing states and assigns a confidence level.
- Score: 13.365388879978264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum sensing (QS) harnesses quantum phenomena to measure physical observables with extraordinary precision, sensitivity, and resolution. Despite significant advancements in quantum sensing, prevailing efforts have focused predominantly on refining the underlying sensor materials and hardware. Given the growing demands of increasingly complex application domains and the continued evolution of quantum sensing technologies, the present moment is the right time to systematically explore distributed quantum sensing architectures and their corresponding design space. We present STQS, a unified system architecture for spatiotemporal quantum sensing that interlaces four key quantum components: sensing, memory, communication, and computation. By employing a comprehensive gate-based framework, we systemically explore the design space of quantum sensing schemes and probe the influence of noise at each state in a sensing workflow through simulation. We introduce a novel distance-based metric that compares reference states to sensing states and assigns a confidence level. We anticipate that the distance measure will serve as an intermediate step towards more advanced quantum signal processing techniques like quantum machine learning. To our knowledge, STQS is the first system-level framework to integrate quantum sensing within a coherent, unified architectural paradigm. STQS provides seamless avenues for unique state preparation, multi-user sensing requests, and addressing practical implementations. We demonstrate the versatility of STQS through evaluations of quantum radar and qubit-based dark matter detection. To highlight the near-term feasibility of our approach, we present results obtained from IBM's Marrakesh and IonQ's Forte devices, validating key STQS components on present day quantum hardware.
Related papers
- Standardized test of many-body coherence in gate-based quantum platforms [3.983816213148414]
We propose a method to define a many-body quantum coherence length scale using anyon interference effects in a spin-chain setup.
We demonstrate how this approach can be implemented on gate-based quantum platforms to estimate and compare the quantum coherence of current devices.
arXiv Detail & Related papers (2025-03-16T17:01:14Z) - Quantum Compressive Sensing Meets Quantum Noise: A Practical Exploration [8.260432715157027]
We present a practical implementation of Quantum Compressive Sensing (QCS) on Amazon Braket.<n>QCS is a quantum data-driven approach to compressive sensing where the state of the tensor network is represented by a quantum state over a set of entangled qubits.<n>We discuss potential long-term directions aimed at unlocking the full potential of quantum compressive sensing for applications such as signal recovery and image processing.
arXiv Detail & Related papers (2025-01-21T18:10:03Z) - Quantum integrated sensing and communication via entanglement [4.854937611943075]
We propose a novel quantum integrated sensing and communication protocol, which achieves quantum sensing under the Heisenberg limit.
We have theoretically proven its security against eavesdroppers.
arXiv Detail & Related papers (2024-04-12T09:17:43Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Towards Quantum-Native Communication Systems: State-of-the-Art, Trends, and Challenges [27.282184604334603]
The survey examines technologies such as quantumdomain (QD) multi-input multi-output, QD non-orthogonal multiple access, quantum secure direct communication, QD resource allocation, QD routing, and QD artificial intelligence.<n>The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Space-borne quantum memories for global quantum communication [0.0]
We analyse the use of quantum memory (QM)-equipped satellites for quantum communication.
We demonstrate that satellites equipped with QMs provide three orders of magnitude faster entanglement distribution rates than existing protocols.
arXiv Detail & Related papers (2020-06-18T16:03:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.