論文の概要: On-device edge learning for IoT data streams: a survey
- arxiv url: http://arxiv.org/abs/2502.17788v1
- Date: Tue, 25 Feb 2025 02:41:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:49.943483
- Title: On-device edge learning for IoT data streams: a survey
- Title(参考訳): IoTデータストリームのためのデバイス上でのエッジ学習 - 調査より
- Authors: Afonso Lourenço, João Rodrigo, João Gama, Goreti Marreiros,
- Abstract要約: 本稿では,ニューラルネットワーク(NN)と決定木(DT)の文脈におけるデバイス上でのトレーニングのための連続的学習手法について検討する。
データアーキテクチャ(バッチ対ストリーム)やネットワーク容量(クラウド対エッジ)といった重要な制約を強調します。
調査では、リソース制約のあるエッジデバイスにディープラーニングをデプロイする際の課題について詳述している。
- 参考スコア(独自算出の注目度): 1.7186863539230333
- License:
- Abstract: This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs) for classification tasks on smart environments. We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge), which impact TinyML algorithm design, due to the uncontrolled natural arrival of data streams. The survey details the challenges of deploying deep learners on resource-constrained edge devices, including catastrophic forgetting, data inefficiency, and the difficulty of handling IoT tabular data in open-world settings. While decision trees are more memory-efficient for on-device training, they are limited in expressiveness, requiring dynamic adaptations, like pruning and meta-learning, to handle complex patterns and concept drifts. We emphasize the importance of multi-criteria performance evaluation tailored to edge applications, which assess both output-based and internal representation metrics. The key challenge lies in integrating these building blocks into autonomous online systems, taking into account stability-plasticity trade-offs, forward-backward transfer, and model convergence.
- Abstract(参考訳): 本稿では,ニューラルネットワーク (NN) と決定木 (DT) の文脈におけるデバイス上でのトレーニングの継続学習手法について検討する。
データ・アーキテクチャ(バッチ対ストリーム)やネットワーク・キャパシティ(クラウド対エッジ)といったキーとなる制約を強調します。
調査では、破滅的な忘れ、データ非効率、オープンワールド設定でのIoT表データ処理の難しさなど、リソース制約のあるエッジデバイスにディープラーニングをデプロイする上での課題について詳述している。
デバイス上でのトレーニングでは、決定木の方がメモリ効率がよいが、複雑なパターンやコンセプトドリフトを扱うためには、プルーニングやメタラーニングといった動的適応を必要とするため、表現力に制限がある。
我々は、出力ベースと内部表現の両方を評価するエッジアプリケーションに適したマルチ基準性能評価の重要性を強調した。
重要な課題は、これらのビルディングブロックを自律的なオンラインシステムに統合することであり、安定性と塑性のトレードオフ、前方転送、モデル収束を考慮している。
関連論文リスト
- Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks [1.3631535881390204]
オンライン連続学習(OCL)は、機械学習において重要な分野である。
本研究は,OCLに関する総合的なシステム文献レビューを初めて実施する。
論文 参考訳(メタデータ) (2025-01-09T01:03:14Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
本稿では,IDSのための事前学習MLモデルと構成の動的適応のための結合パイプラインに,特徴選択,モデルプルーニング,微調整技術を統合する新しいソリューションであるINTELLECTを紹介する。
我々は,知識蒸留技術を微調整中に組み込むことの利点を実証し,MLモデルが歴史的知識を維持しつつ,局所的なネットワークパターンに一貫して適応できることを示す。
論文 参考訳(メタデータ) (2024-07-17T22:34:29Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
本稿では,エッジサーバの高性能機能を活用した,エッジ支援型U-Shaped Split Federated Learning (EUSFL) フレームワークを提案する。
このフレームワークでは、フェデレートラーニング(FL)を活用し、データ保持者がデータを共有せずに協調的にモデルをトレーニングできるようにします。
また,データの特徴やラベルが復元攻撃に対して確実に耐えられるように,ラベルDPと呼ばれる新しいノイズ機構を提案する。
論文 参考訳(メタデータ) (2023-11-08T05:14:41Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
エッジサーバと多数のモバイルデバイス(クライアント)は、モバイルデバイスが収集した膨大なデータをエッジサーバに転送することなく、グローバルモデルを共同で学習する。
提案手法は,STFLに参加する予定の様々なモバイルデバイスからの学習更新の空間的および時間的相関を利用している。
収束性能を用いてSTFLの学習能力を研究するために,STFLの分析フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T16:46:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
フェデレーション学習は、中央にデータをアップロードすることなく、分散されたスマートデバイスから大量のデータを分析できる。
本稿では、IoTのリソース制約されたスマートデバイスにまたがるデータから機械学習モデルを効率的にトレーニングするためのDP-PASGDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-28T04:32:54Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。