URO-Bench: A Comprehensive Benchmark for End-to-End Spoken Dialogue Models
- URL: http://arxiv.org/abs/2502.17810v2
- Date: Sat, 01 Mar 2025 11:14:44 GMT
- Title: URO-Bench: A Comprehensive Benchmark for End-to-End Spoken Dialogue Models
- Authors: Ruiqi Yan, Xiquan Li, Wenxi Chen, Zhikang Niu, Chen Yang, Ziyang Ma, Kai Yu, Xie Chen,
- Abstract summary: We propose URO-Bench, an extensive benchmark for spoken dialogue models (SDMs)<n>URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics.<n>Our benchmark is divided into two difficulty levels: basic track and pro track, consisting of 16 and 20 datasets respectively.
- Score: 8.882948576463244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, with advances in large language models (LLMs), end-to-end spoken dialogue models (SDMs) have made significant strides. Compared to text-based LLMs, the evaluation of SDMs needs to take speech-related aspects into account, such as paralinguistic information and speech quality. However, there is still a lack of comprehensive evaluations for SDMs in speech-to-speech (S2S) scenarios. To address this gap, we propose URO-Bench, an extensive benchmark for SDMs. Notably, URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics. Our benchmark is divided into two difficulty levels: basic track and pro track, consisting of 16 and 20 datasets respectively, evaluating the model's abilities in Understanding, Reasoning, and Oral conversation. Evaluations on our proposed benchmark reveal that current open-source SDMs perform rather well in daily QA tasks, but lag behind their backbone LLMs in terms of instruction-following ability and also suffer from catastrophic forgetting. Their performance in advanced evaluations of paralinguistic information and audio understanding remains subpar, highlighting the need for further research in this direction. We hope that URO-Bench can effectively facilitate the development of spoken dialogue models by providing a multifaceted evaluation of existing models and helping to track progress in this area.
Related papers
- Full-Duplex-Bench: A Benchmark to Evaluate Full-duplex Spoken Dialogue Models on Turn-taking Capabilities [93.09944267871163]
FullDuplexBench is a benchmark that systematically evaluates key conversational behaviors.
We aim to advance spoken dialogue modeling and encourage the development of more interactive and natural dialogue systems.
arXiv Detail & Related papers (2025-03-06T18:59:16Z) - Audio Large Language Models Can Be Descriptive Speech Quality Evaluators [46.765203628127345]
We introduce the first natural language-based speech evaluation corpus, generated from authentic human ratings.<n>This corpus offers detailed analysis across multiple dimensions and identifies causes of quality degradation.<n>We propose an alignment approach with LLM distillation (ALLD) to guide the audio LLM in extracting relevant information from raw speech.
arXiv Detail & Related papers (2025-01-27T22:47:51Z) - VoxEval: Benchmarking the Knowledge Understanding Capabilities of End-to-End Spoken Language Models [32.086847480051084]
We present VoxEval, a novel SpeechQA benchmark that assesses knowledge understanding through pure speech interactions.<n>Our benchmark 1) maintains speech format for both inputs and outputs, 2) evaluates model robustness across diverse input audio conditions, and 3) pioneers the assessment of complex tasks like mathematical reasoning in spoken format.
arXiv Detail & Related papers (2025-01-09T04:30:12Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
We introduce AIR-Bench, the first benchmark to evaluate the ability of Large Audio-Language Models (LALMs) to understand various types of audio signals and interact with humans in the textual format.
Results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation.
arXiv Detail & Related papers (2024-02-12T15:41:22Z) - Are LLMs Robust for Spoken Dialogues? [10.855403629160921]
Large Pre-Trained Language Models have demonstrated state-of-the-art performance in different downstream tasks.
Most of the publicly available datasets and benchmarks on task-oriented dialogues focus on written conversations.
We have evaluated the performance of LLMs for spoken task-oriented dialogues on the DSTC11 test sets.
arXiv Detail & Related papers (2024-01-04T14:36:38Z) - Simple LLM Prompting is State-of-the-Art for Robust and Multilingual
Dialogue Evaluation [7.767020408405403]
We propose a novel framework that takes advantage of the strengths of current evaluation models with the newly-established paradigm of prompting Large Language Models (LLMs)
Empirical results show our framework achieves state of the art results in terms of mean Spearman correlation scores across several benchmarks.
arXiv Detail & Related papers (2023-08-31T15:19:28Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZ is a large-scale speech-text dataset for spoken TOD.
Cross-turn slot and reasoning slot detection are new challenges for SpokenWOZ.
arXiv Detail & Related papers (2023-05-22T13:47:51Z) - Don't Copy the Teacher: Data and Model Challenges in Embodied Dialogue [92.01165203498299]
Embodied dialogue instruction following requires an agent to complete a complex sequence of tasks from a natural language exchange.
This paper argues that imitation learning (IL) and related low-level metrics are actually misleading and do not align with the goals of embodied dialogue research.
arXiv Detail & Related papers (2022-10-10T05:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.