論文の概要: A Novel Retinial Image Contrast Enhancement -- Fuzzy-Based Method
- arxiv url: http://arxiv.org/abs/2502.17850v1
- Date: Tue, 25 Feb 2025 04:54:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:21.047015
- Title: A Novel Retinial Image Contrast Enhancement -- Fuzzy-Based Method
- Title(参考訳): 新たな網膜画像コントラスト強調-ファジィ法
- Authors: Adnan Shaout, Jiho Han,
- Abstract要約: 本稿では, ファジィコントラスト強調(FCE)とコントラスト限定アダプティブヒストグラム等化(CLAHE)を線形ブレンドして網膜血管構造セグメンテーションの網膜像を強化する新しいモデルを提案する。
その結果, FCE法とCLAHE法の組み合わせで大きな改善が認められた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The vascular structure in retinal images plays a crucial role in ophthalmic diagnostics, and its accuracies are directly influenced by the quality of the retinal image. Contrast enhancement is one of the crucial steps in any segmentation algorithm - the more so since the retinal images are related to medical diagnosis. Contrast enhancement is a vital step that not only intensifies the darkness of the blood vessels but also prevents minor capillaries from being disregarded during the process. This paper proposes a novel model that utilizes the linear blending of Fuzzy Contrast Enhancement (FCE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance the retinal image for retinal vascular structure segmentation. The scheme is tested using the Digital Retinal Images for Vessel Extraction (DRIVE) dataset. The assertion was then evaluated through performance comparison among other methodologies which are Gray-scaling, Histogram Equalization (HE), FCE, and CLAHE. It was evident in this paper that the combination of FCE and CLAHE methods showed major improvement. Both FCE and CLAHE methods dominating with 88% as better enhancement methods proved that preprocessing through fuzzy logic is effective.
- Abstract(参考訳): 網膜画像の血管構造は眼科診断において重要な役割を担い、その精度は網膜画像の品質に直接影響される。
コントラスト増強は、あらゆるセグメンテーションアルゴリズムにおいて重要なステップの1つである。
コントラスト増強は、血管の暗さを増すだけでなく、その過程で小さな毛細血管が無視されるのを防ぐ重要なステップである。
本稿では, ファジィコントラスト強調(FCE)とコントラスト限定アダプティブヒストグラム等化(CLAHE)を線形ブレンドして網膜血管構造セグメンテーションの網膜像を強化する新しいモデルを提案する。
このスキームは、Digital Retinal Images for Vessel extract (DRIVE) データセットを用いてテストされる。
このアサーションは,Gray-scaling, Histogram Equalization (HE), FCE, CLAHEなどの他の手法と比較して評価した。
その結果, FCE法とCLAHE法の組み合わせで大きな改善が認められた。
FCE法とCLAHE法は, ファジィ論理による前処理が有効であることが証明されたため, 88%で支配的であった。
関連論文リスト
- DGSSA: Domain generalization with structural and stylistic augmentation for retinal vessel segmentation [17.396365010722423]
網膜血管形態は糖尿病、緑内障、高血圧などの疾患の診断に重要である。
従来のセグメンテーション手法は、トレーニングとテストのデータが同様の分布を共有していると仮定する。
本稿では,網膜血管画像分割のための新しいアプローチ DGSSA を提案する。
論文 参考訳(メタデータ) (2025-01-07T01:47:57Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
画像強調とドメイン適応を同時に行うために,エンドツーエンドの教師支援フレームワークを提案する。
また,教師ネットワークと学生ネットワークのバックボーンとして,マルチステージ型マルチアテンション・ガイド・エンハンスメント・ネットワーク(MAGE-Net)を提案する。
論文 参考訳(メタデータ) (2023-02-23T06:16:15Z) - OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation
Meets Regularization by Enhancing [4.951748109810726]
正確な診断と自動解析のために、最適な網膜画像品質が義務付けられている。
そこで本研究では,低品質の網膜CFPを高画質のCFPにマッピングするための画像対画像変換手法を提案する。
統合されたフレームワークOTREを3つの公開網膜画像データセット上で検証した。
論文 参考訳(メタデータ) (2023-02-06T18:39:40Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Retinal Image Restoration and Vessel Segmentation using Modified
Cycle-CBAM and CBAM-UNet [0.7868449549351486]
畳み込みブロックアテンションモジュール(CBAM)を備えたサイクル一貫性生成対向ネットワーク(CycleGAN)を網膜画像復元に使用する。
修正されたUNetは、回復した網膜画像の網膜血管セグメンテーションに使用される。
提案手法は, アウト・オブ・フォーカスのぼかし, 色歪み, 低, 高, 不均一照明による劣化効果を著しく低減することができる。
論文 参考訳(メタデータ) (2022-09-09T10:47:20Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - COROLLA: An Efficient Multi-Modality Fusion Framework with Supervised
Contrastive Learning for Glaucoma Grading [1.2250035750661867]
緑内障の診断に有効な多モード教師付きコントラスト学習フレームワークであるCOROLLAを提案する。
教師付きコントラスト学習を用いて、より良い収束性でモデルの識別能力を高めます。
GAMMAデータセットでは,我々のCOROLLAフレームワークは最先端の手法と比較して圧倒的な緑内障グレーディング性能を達成している。
論文 参考訳(メタデータ) (2022-01-11T06:00:51Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。