論文の概要: Contrastive Learning with Nasty Noise
- arxiv url: http://arxiv.org/abs/2502.17872v1
- Date: Tue, 25 Feb 2025 05:55:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:48.764242
- Title: Contrastive Learning with Nasty Noise
- Title(参考訳): 騒音によるコントラスト学習
- Authors: Ziruo Zhao,
- Abstract要約: この研究は、相手がトレーニングサンプルを変更したり置き換えたりする騒音下でのコントラスト学習の理論的限界を分析する。
l2-距離関数に基づくデータ依存型サンプル複雑性境界を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Contrastive learning has emerged as a powerful paradigm for self-supervised representation learning. This work analyzes the theoretical limits of contrastive learning under nasty noise, where an adversary modifies or replaces training samples. Using PAC learning and VC-dimension analysis, lower and upper bounds on sample complexity in adversarial settings are established. Additionally, data-dependent sample complexity bounds based on the l2-distance function are derived.
- Abstract(参考訳): コントラスト学習は自己指導型表現学習の強力なパラダイムとして登場した。
この研究は、相手がトレーニングサンプルを変更したり置き換えたりする騒音下でのコントラスト学習の理論的限界を分析する。
PAC学習とVC次元分析を用いて、対向的な設定におけるサンプルの複雑さの下位と上位の境界を定めている。
さらに、l2距離関数に基づくデータ依存型サンプル複雑性境界を導出する。
関連論文リスト
- Monotonic Learning in the PAC Framework: A New Perspective [8.911102248548206]
モノトーン学習(Monotone learning)とは、より多くのトレーニングデータを導入すると、期待されるパフォーマンスが継続的に向上する学習プロセスを指す。
本稿では,PAC学習理論の枠組みの中で,単調学習の課題に取り組む。
低境界分布を計算することにより、有限サイズまたは有限VC次元の仮説空間を持つPAC学習可能問題を与えられた場合、経験的リスク最小化(ERM)に基づく学習アルゴリズムは単調であることを示すことができる。
論文 参考訳(メタデータ) (2025-01-09T12:26:11Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - On the Sample Complexity of Vanilla Model-Based Offline Reinforcement
Learning with Dependent Samples [32.707730631343416]
オフライン強化学習(オフラインRL)は、以前に収集したサンプルのみを用いて学習を行う問題を考える。
モデルベースオフラインRLでは、学習者は経験的遷移に応じて構築されたモデルを用いて推定(または最適化)を行う。
本研究では,バニラモデルに基づくオフラインRLのサンプル複雑性を無限水平ディスカウント・リワード設定における依存サンプルを用いて解析する。
論文 参考訳(メタデータ) (2023-03-07T22:39:23Z) - Curriculum Learning Meets Weakly Supervised Modality Correlation
Learning [26.754095474534534]
カリキュラム学習を弱教師付きモダリティ相関学習に導入する。
相関学習を支援するために,学習の難しさに応じてトレーニングペアをモデルに供給する。
提案手法は,マルチモーダル感情分析における最先端の性能に達する。
論文 参考訳(メタデータ) (2022-12-15T05:11:04Z) - Beyond Instance Discrimination: Relation-aware Contrastive
Self-supervised Learning [75.46664770669949]
本稿では,関係認識型コントラスト型自己教師型学習(ReCo)をインスタンス関係に統合するために提案する。
当社のReCoは、常に顕著なパフォーマンス改善を実現しています。
論文 参考訳(メタデータ) (2022-11-02T03:25:28Z) - Pairwise Learning via Stagewise Training in Proximal Setting [0.0]
非平滑凸対損失関数の収束保証と、適応的なサンプルサイズとペアワイズ学習のための重要サンプリング手法を組み合わせる。
それぞれに逆のインスタンスをサンプリングすると勾配の分散が減少し、収束が加速することを示した。
論文 参考訳(メタデータ) (2022-08-08T11:51:01Z) - Simple Contrastive Representation Adversarial Learning for NLP Tasks [17.12062566060011]
教師付きコントラスト対逆学習(SCAL)と教師なしSCAL(USCAL)の2つの新しいフレームワークを提案する。
本稿では,自然言語理解,文意味的テキスト類似性,対人学習タスクのためのTransformerベースのモデルに適用する。
GLUEベンチマークタスクの実験結果から,細調整された教師付き手法はBERT$_base$1.75%以上の性能を示した。
論文 参考訳(メタデータ) (2021-11-26T03:16:09Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
本稿では,自己指導型コントラスト学習のための新たな偽陰性検出手法を提案する。
対照的な学習では、検出された偽陰性を明示的に除去する2つの戦略について議論する。
提案手法は,制限された計算内での複数のベンチマークにおいて,他の自己教師付きコントラスト学習フレームワークよりも優れる。
論文 参考訳(メタデータ) (2021-06-07T15:29:14Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
再生カーネルヒルベルト空間におけるスパース非パラメトリック制御系を学習するための強化学習アルゴリズムを提案する。
正規化アドバンテージ関数を通じてステートアクション関数の構造を付与することにより、このアプローチのサンプル複雑さを改善します。
2次元環境下を走行しながらレーザースキャナーを搭載したロボットの複数シミュレーションにおける障害物回避政策の学習に関するアルゴリズムの性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T13:58:23Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
本稿では,類似推論に頼って,数ショット(または低ショット)の視覚推論問題を解くことを提案する。
両領域の要素間の構造的関係を抽出し、類似学習と可能な限り類似するように強制する。
RAVENデータセット上での本手法の有効性を検証し, トレーニングデータが少ない場合, 最先端の手法より優れることを示す。
論文 参考訳(メタデータ) (2020-07-23T14:00:34Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。