BD Currency Detection: A CNN Based Approach with Mobile App Integration
- URL: http://arxiv.org/abs/2502.17907v1
- Date: Tue, 25 Feb 2025 07:13:43 GMT
- Title: BD Currency Detection: A CNN Based Approach with Mobile App Integration
- Authors: Syed Jubayer Jaman, Md. Zahurul Haque, Md Robiul Islam, Usama Abdun Noor,
- Abstract summary: This study introduces an advanced currency recognition system utilizing Convolutional Neural Networks (CNNs)<n>A dataset comprising 50,334 images was collected, preprocessed, and used to train a CNN model optimized for high performance classification.<n>The trained model achieved an accuracy of 98.5%, surpassing conventional based currency recognition approaches.
- Score: 1.2535250082638645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currency recognition plays a vital role in banking, commerce, and assistive technology for visually impaired individuals. Traditional methods, such as manual verification and optical scanning, often suffer from limitations in accuracy and efficiency. This study introduces an advanced currency recognition system utilizing Convolutional Neural Networks (CNNs) to accurately classify Bangladeshi banknotes. A dataset comprising 50,334 images was collected, preprocessed, and used to train a CNN model optimized for high performance classification. The trained model achieved an accuracy of 98.5%, surpassing conventional image based currency recognition approaches. To enable real time and offline functionality, the model was converted into TensorFlow Lite format and integrated into an Android mobile application. The results highlight the effectiveness of deep learning in currency recognition, providing a fast, secure, and accessible solution that enhances financial transactions and assistive technologies.
Related papers
- Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion) is an enhanced diffusion model that boosts underlying semantics learning, computational efficiency, and in-context learning capabilities.
We present a Feedback-Aided Learning (FAL) framework, which leverages feedback signals to guide the model in capturing semantic details.
We also propose a plug-and-play Efficient Sampling Strategy (ESS) for dense sampling at time steps with high-noise levels.
arXiv Detail & Related papers (2025-03-06T03:06:22Z) - Money Recognition for the Visually Impaired: A Case Study on Sri Lankan Banknotes [0.0]
This research proposes a user-friendly stand-alone system for the identification of Sri Lankan currency notes.<n>A custom-created dataset of images of Sri Lankan currency notes was used to fine-tune an EfficientDet model.<n>The model achieved 0.9847 AP on the validation dataset and performs exceptionally well in real-world scenarios.
arXiv Detail & Related papers (2025-02-20T05:07:46Z) - Explainable AI for Fraud Detection: An Attention-Based Ensemble of CNNs, GNNs, and A Confidence-Driven Gating Mechanism [5.486205584465161]
This study presents a new stacking-based approach for CCF detection by adding two extra layers to the usual classification process.<n>In the attention layer, we combine soft outputs from a convolutional neural network (CNN) and a recurrent neural network (RNN) using the dependent ordered weighted averaging (DOWA) operator.<n>In the confidence-based layer, we select whichever aggregate (DOWA or IOWA) shows lower uncertainty to feed into a meta-learner.<n>Experiments on three datasets show that our method achieves high accuracy and robust generalization, making it effective for CCF detection.
arXiv Detail & Related papers (2024-10-01T09:56:23Z) - Relax DARTS: Relaxing the Constraints of Differentiable Architecture Search for Eye Movement Recognition [9.905155497581815]
We introduce automated network search (NAS) algorithms to the field of eye movement recognition.
Relax DARTS is an improvement of the Differentiable Architecture Search (DARTS) to realize more efficient network search and training.
Relax DARTS exhibits adaptability to other multi-feature temporal classification tasks.
arXiv Detail & Related papers (2024-09-18T02:37:04Z) - Towards a Foundation Purchasing Model: Pretrained Generative
Autoregression on Transaction Sequences [0.0]
We present a generative pretraining method that can be used to obtain contextualised embeddings of financial transactions.
We additionally perform large-scale pretraining of an embedding model using a corpus of data from 180 issuing banks containing 5.1 billion transactions.
arXiv Detail & Related papers (2024-01-03T09:32:48Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
Single image super-resolution techniques are emerging, especially with the use of convolutional neural networks (CNNs)
In this work, the authors explore single image super-resolution using CNNs for iris recognition.
They validate their approach on a database of 1.872 near infrared iris images and on a mobile phone image database.
arXiv Detail & Related papers (2022-10-24T11:19:18Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
Transferring knowledge from task-agnostic pre-trained deep models for downstream tasks is an important topic in computer vision research.
In this study, we focus on transferring knowledge for video classification tasks.
We utilize the well-pretrained language model to generate good semantic target for efficient transferring learning.
arXiv Detail & Related papers (2022-07-04T10:00:47Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Automatic Counting and Identification of Train Wagons Based on Computer
Vision and Deep Learning [70.84106972725917]
The proposed solution is cost-effective and can easily replace solutions based on radiofrequency identification (RFID)
The system is able to automatically reject some of the train wagons successfully counted, as they have damaged identification codes.
arXiv Detail & Related papers (2020-10-30T14:56:54Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z) - Teaching CNNs to mimic Human Visual Cognitive Process & regularise
Texture-Shape bias [18.003188982585737]
Recent experiments in computer vision demonstrate texture bias as the primary reason for supreme results in models employing Convolutional Neural Networks (CNNs)
It is believed that the cost function forces the CNN to take a greedy approach and develop a proclivity for local information like texture to increase accuracy, thus failing to explore any global statistics.
We propose CognitiveCNN, a new intuitive architecture, inspired from feature integration theory in psychology to utilise human interpretable feature like shape, texture, edges etc. to reconstruct, and classify the image.
arXiv Detail & Related papers (2020-06-25T22:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.