Explainable AI for Fraud Detection: An Attention-Based Ensemble of CNNs, GNNs, and A Confidence-Driven Gating Mechanism
- URL: http://arxiv.org/abs/2410.09069v2
- Date: Sat, 22 Feb 2025 11:00:27 GMT
- Title: Explainable AI for Fraud Detection: An Attention-Based Ensemble of CNNs, GNNs, and A Confidence-Driven Gating Mechanism
- Authors: Mehdi Hosseini Chagahi, Niloufar Delfan, Saeed Mohammadi Dashtaki, Behzad Moshiri, Md. Jalil Piran,
- Abstract summary: This study presents a new stacking-based approach for CCF detection by adding two extra layers to the usual classification process.<n>In the attention layer, we combine soft outputs from a convolutional neural network (CNN) and a recurrent neural network (RNN) using the dependent ordered weighted averaging (DOWA) operator.<n>In the confidence-based layer, we select whichever aggregate (DOWA or IOWA) shows lower uncertainty to feed into a meta-learner.<n>Experiments on three datasets show that our method achieves high accuracy and robust generalization, making it effective for CCF detection.
- Score: 5.486205584465161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid expansion of e-commerce and the widespread use of credit cards in online purchases and financial transactions have significantly heightened the importance of promptly and accurately detecting credit card fraud (CCF). Not only do fraudulent activities in financial transactions lead to substantial monetary losses for banks and financial institutions, but they also undermine user trust in digital services. This study presents a new stacking-based approach for CCF detection by adding two extra layers to the usual classification process: an attention layer and a confidence-based combination layer. In the attention layer, we combine soft outputs from a convolutional neural network (CNN) and a recurrent neural network (RNN) using the dependent ordered weighted averaging (DOWA) operator, and from a graph neural network (GNN) and a long short-term memory (LSTM) network using the induced ordered weighted averaging (IOWA) operator. These weighted outputs capture different predictive signals, increasing the model's accuracy. Next, in the confidence-based layer, we select whichever aggregate (DOWA or IOWA) shows lower uncertainty to feed into a meta-learner. To make the model more explainable, we use shapley additive explanations (SHAP) to identify the top ten most important features for distinguishing between fraud and normal transactions. These features are then used in our attention-based model. Experiments on three datasets show that our method achieves high accuracy and robust generalization, making it effective for CCF detection.
Related papers
- Detecting Credit Card Fraud via Heterogeneous Graph Neural Networks with Graph Attention [2.7002727600755883]
This study proposes a credit card fraud detection method based on Heterogeneous Graph Neural Network (HGNN)
By leveraging graph neural networks, the model captures higher-order transaction relationships.
The model achieves notable improvements in both accuracy and OC-ROC.
arXiv Detail & Related papers (2025-04-11T00:53:53Z) - Exact Certification of (Graph) Neural Networks Against Label Poisoning [50.87615167799367]
We introduce an exact certification method for label flipping in Graph Neural Networks (GNNs)
We apply our method to certify a broad range of GNN architectures in node classification tasks.
Our work presents the first exact certificate to a poisoning attack ever derived for neural networks.
arXiv Detail & Related papers (2024-11-30T17:05:12Z) - Multi-task CNN Behavioral Embedding Model For Transaction Fraud Detection [6.153407718616422]
Deep learning methods have become integral to embedding behavior sequence data in fraud detection.
We introduce the multitask CNN behavioral Embedding Model for Transaction Fraud Detection.
Our contributions include 1) introducing a single-layer CNN design featuring multirange kernels which outperform LSTM and Transformer models in terms of scalability and domain-focused inductive bias.
arXiv Detail & Related papers (2024-11-29T03:58:11Z) - Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection.
It combines the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks.
A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity.
arXiv Detail & Related papers (2024-07-09T03:59:06Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
This research proposes an innovative methodology combining Neural Networks (NN) and Synthet ic Minority Over-sampling Technique (SMOTE) to enhance the detection performance.
The study addresses the inherent imbalance in credit card transaction data, focusing on technical advancements for robust and precise fraud detection.
arXiv Detail & Related papers (2024-02-27T02:26:04Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
We introduce a state-of-the-art hybrid ensemble (ENS) Machine learning (ML) model that intelligently combines multiple algorithms to enhance fraud identification.
Our experiments are conducted on a publicly available credit card dataset comprising 284,807 transactions.
The proposed model achieves impressive accuracy rates of 99.66%, 99.73%, 98.56%, and 99.79%, and a perfect 100% for the DT, RF, KNN, and ENS models, respectively.
arXiv Detail & Related papers (2024-02-22T09:01:42Z) - Explainable Fraud Detection with Deep Symbolic Classification [4.1205832766381985]
We present Deep Classification, an extension of the Deep Symbolic Regression framework to classification problems.
Because the functions are mathematical expressions that are in closed-form and concise, the model is inherently explainable both at the level of a single classification decision and the model's decision process.
An evaluation on the PaySim data set demonstrates competitive predictive performance with state-of-the-art models, while surpassing them in terms of explainability.
arXiv Detail & Related papers (2023-12-01T13:50:55Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer [5.043422340181098]
We propose a novel graph neural network called Spatial-Temporal-Aware Graph Transformer (STA-GT) for transaction fraud detection problems.
Specifically, we design a temporal encoding strategy to capture temporal dependencies and incorporate it into the graph neural network framework.
We introduce a transformer module to learn local and global information.
arXiv Detail & Related papers (2023-07-11T08:56:53Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Fraud Detection Using Optimized Machine Learning Tools Under Imbalance
Classes [0.304585143845864]
Fraud detection with smart versions of machine learning (ML) tools is essential to assure safety.
We investigate four state-of-the-art ML techniques, namely, logistic regression, decision trees, random forest, and extreme gradient boost.
For phishing website URLs and credit card fraud transaction datasets, the results indicate that extreme gradient boost trained on the original data shows trustworthy performance.
arXiv Detail & Related papers (2022-09-04T15:30:23Z) - Be Your Own Neighborhood: Detecting Adversarial Example by the
Neighborhood Relations Built on Self-Supervised Learning [64.78972193105443]
This paper presents a novel AE detection framework, named trustworthy for predictions.
performs the detection by distinguishing the AE's abnormal relation with its augmented versions.
An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label.
arXiv Detail & Related papers (2022-08-31T08:18:44Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
We propose a novel Graph Neural Network (GNN) model to learn flow patterns of attacks structured as graphs.
Our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under adversarial attacks.
arXiv Detail & Related papers (2021-07-30T16:56:39Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.