C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models
- URL: http://arxiv.org/abs/2502.17920v1
- Date: Tue, 25 Feb 2025 07:35:36 GMT
- Title: C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models
- Authors: Xin Zhang, Liang Bai, Xian Yang, Jiye Liang,
- Abstract summary: Low-Rank Adaptation (LoRA) is an efficient fine-tuning method that has been extensively applied in areas such as natural language processing and computer vision.<n>We propose Continual Low-Rank Adaptation (C-LoRA), a novel extension of LoRA for continual learning.<n>C-LoRA uses a learnable routing matrix to dynamically manage parameter updates across tasks.
- Score: 26.560293264523903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Rank Adaptation (LoRA) is an efficient fine-tuning method that has been extensively applied in areas such as natural language processing and computer vision. Existing LoRA fine-tuning approaches excel in static environments but struggle in dynamic learning due to reliance on multiple adapter modules, increasing overhead and complicating inference. We propose Continual Low-Rank Adaptation (C-LoRA), a novel extension of LoRA for continual learning. C-LoRA uses a learnable routing matrix to dynamically manage parameter updates across tasks, ensuring efficient reuse of learned subspaces while enforcing orthogonality to minimize interference and forgetting. Unlike existing approaches that require separate adapters for each task, C-LoRA enables a integrated approach for task adaptation, achieving both scalability and parameter efficiency in sequential learning scenarios. C-LoRA achieves state-of-the-art accuracy and parameter efficiency on benchmarks while providing theoretical insights into its routing matrix's role in retaining and transferring knowledge, establishing a scalable framework for continual learning.
Related papers
- FM-LoRA: Factorized Low-Rank Meta-Prompting for Continual Learning [19.068489119024388]
Continual learning has emerged as a promising approach to leverage pre-trained models for sequential tasks.
Many existing CL methods incrementally store additional learned structures, such as Low-Rank Adaptation (LoRA) adapters or prompts.
We propose FM-LoRA, a novel and efficient low-rank adaptation method that integrates both a dynamic rank selector (DRS) and dynamic meta-prompting (DMP)
arXiv Detail & Related papers (2025-04-09T19:36:18Z) - MetaLoRA: Tensor-Enhanced Adaptive Low-Rank Fine-tuning [23.735592086378194]
Low-Rank Adaptation (LoRA) has emerged as a promising parameter-efficient fine-tuning method.
Current LoRA variants primarily focus on general parameter reduction while overlooking the importance of dynamic parameter adjustment and meta-learning capabilities.
This research proposes a LoRA generation approach to model task relationships and introduces MetaLoRA, a novel parameter-efficient adaptation framework.
arXiv Detail & Related papers (2025-04-01T06:34:26Z) - SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs [4.194295877935867]
We propose a lightweight continual learning framework for large language models (LLMs)<n>Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups.<n> Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters.
arXiv Detail & Related papers (2025-02-05T06:11:55Z) - Dynamic Adaptation of LoRA Fine-Tuning for Efficient and Task-Specific Optimization of Large Language Models [0.7421845364041001]
This paper presents a novel methodology of fine-tuning for large language models-dynamic LoRA.<n>It adds dynamic adaptation mechanisms to improve efficiency and performance.<n>The efficiency of the dynamic LoRA was validated in experiments on benchmark datasets.
arXiv Detail & Related papers (2025-01-24T18:54:14Z) - S-LoRA: Scalable Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising approach to harnessing the power of pre-trained models for sequential tasks.<n>We propose a Scalable Low-Rank Adaptation (S-LoRA) method for CL (in particular class incremental learning), which incrementally decouples the learning of the direction and magnitude of LoRA parameters.<n>Our theoretical and empirical analysis demonstrates that S-LoRA tends to follow a low-loss trajectory that converges to an overlapped low-loss region, resulting in an excellent stability-plasticity trade-off in CL.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.<n>Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.<n>We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Dual Low-Rank Adaptation for Continual Learning with Pre-Trained Models [38.97142043836567]
Continual learning (CL) aims to enable vision transformers (ViTs) to learn new tasks over time.
catastrophic forgetting remains a persistent challenge.
We propose a novel PEFT-CL method called Dual Low-Rank Adaptation (DualLoRA)
arXiv Detail & Related papers (2024-11-01T14:28:39Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities.
MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information.
This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.