Enhancing 5G O-RAN Communication Efficiency Through AI-Based Latency Forecasting
- URL: http://arxiv.org/abs/2502.18046v1
- Date: Tue, 25 Feb 2025 10:11:48 GMT
- Title: Enhancing 5G O-RAN Communication Efficiency Through AI-Based Latency Forecasting
- Authors: Raúl Parada, Ebrahim Abu-Helalah, Jordi Serra, Anton Aguilar, Paolo Dini,
- Abstract summary: This paper presents an artificial intelligence-driven latency forecasting system integrated into a functional O-RAN prototype.<n>The system uses a bidirectional long short-term memory model to predict latency in real time within a scalable, open-source framework built with FlexRIC.<n> Experimental results demonstrate the model's efficacy, achieving a loss metric below 0.04, thus validating its applicability in dynamic 5G environments.
- Score: 2.3784320672898227
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing complexity and dynamic nature of 5G open radio access networks (O-RAN) pose significant challenges to maintaining low latency, high throughput, and resource efficiency. While existing methods leverage machine learning for latency prediction and resource management, they often lack real-world scalability and hardware validation. This paper addresses these limitations by presenting an artificial intelligence-driven latency forecasting system integrated into a functional O-RAN prototype. The system uses a bidirectional long short-term memory model to predict latency in real time within a scalable, open-source framework built with FlexRIC. Experimental results demonstrate the model's efficacy, achieving a loss metric below 0.04, thus validating its applicability in dynamic 5G environments.
Related papers
- AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
We propose a framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication.
A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters.
We show that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of samples by up to 52 percent.
arXiv Detail & Related papers (2025-02-14T14:56:58Z) - Intelligent Task Offloading: Advanced MEC Task Offloading and Resource Management in 5G Networks [6.725133919174076]
5G technology enhances industries with high-speed, reliable, low-latency communication, revolutionizing mobile broadband and supporting massive IoT connectivity.<n>With the increasing complexity of applications on User Equipment, offloading resource-intensive tasks to robust servers is essential for improving latency and speed.<n>This paper introduces a novel methodology to efficiently allocate both communication resources among individual UEs.<n>It provides a robust and efficient solution to the challenges posed by the evolving landscape of 5G technology.
arXiv Detail & Related papers (2025-01-08T16:19:44Z) - Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - Root Cause Analysis of Anomalies in 5G RAN Using Graph Neural Network and Transformer [0.9895793818721335]
We propose a state-of-the-art approach for anomaly detection and root cause analysis in 5G Radio Access Networks (RANs)
We leverage Graph Networks to capture spatial relationships while a Transformer model is used to learn the temporal dependencies of the data.
The outcomes are compared against existing solutions to confirm the superiority of Simba.
arXiv Detail & Related papers (2024-06-21T20:34:08Z) - OFDM-Standard Compatible SC-NOFS Waveforms for Low-Latency and Jitter-Tolerance Industrial IoT Communications [53.398544571833135]
This work proposes a spectrally efficient irregular Sinc (irSinc) shaping technique, revisiting the traditional Sinc back to 1924.
irSinc yields a signal with increased spectral efficiency without sacrificing error performance.
Our signal achieves faster data transmission within the same spectral bandwidth through 5G standard signal configuration.
arXiv Detail & Related papers (2024-06-07T09:20:30Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - A Graph Neural Networks based Framework for Topology-Aware Proactive SLA
Management in a Latency Critical NFV Application Use-case [0.34376560669160383]
Recent advancements in 5G and 6G have led to the emergence of latency-critical applications delivered via a Network-series (NFV) enabled paradigm.
We propose a proactive SLA management framework leveraging Graph Neural Networks (GNN) and Deep Reinforcement Learning (DRL) to balance the trade-off between efficiency and reliability.
arXiv Detail & Related papers (2022-11-10T23:22:05Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.