論文の概要: Defining bias in AI-systems: Biased models are fair models
- arxiv url: http://arxiv.org/abs/2502.18060v1
- Date: Tue, 25 Feb 2025 10:28:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:55.036205
- Title: Defining bias in AI-systems: Biased models are fair models
- Title(参考訳): AIシステムにおけるバイアスの定義: バイアス付きモデルは公正なモデルである
- Authors: Chiara Lindloff, Ingo Siegert,
- Abstract要約: 公平性の懸念に効果的に対処するためには、偏見の正確な概念化が必要であると論じる。
偏見を本質的に否定的あるいは不公平と見なすのではなく、偏見と差別を区別することの重要性を強調します。
- 参考スコア(独自算出の注目度): 2.8360662552057327
- License:
- Abstract: The debate around bias in AI systems is central to discussions on algorithmic fairness. However, the term bias often lacks a clear definition, despite frequently being contrasted with fairness, implying that an unbiased model is inherently fair. In this paper, we challenge this assumption and argue that a precise conceptualization of bias is necessary to effectively address fairness concerns. Rather than viewing bias as inherently negative or unfair, we highlight the importance of distinguishing between bias and discrimination. We further explore how this shift in focus can foster a more constructive discourse within academic debates on fairness in AI systems.
- Abstract(参考訳): AIシステムのバイアスに関する議論は、アルゴリズムの公正性に関する議論の中心である。
しかしながら、偏見という用語はしばしば明確な定義を欠いているが、しばしば公正さとは対照的に、偏見のないモデルは本質的に公正であることを意味する。
本稿では、この仮定に挑戦し、公平性の懸念に効果的に対処するために、偏見の正確な概念化が必要であると論じる。
偏見を本質的に否定的あるいは不公平と見なすのではなく、偏見と差別を区別することの重要性を強調します。
我々は、AIシステムの公正性に関する学術的な議論の中で、このシフトがより建設的な談話を促進する方法をさらに探求する。
関連論文リスト
- Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Differential Bias: On the Perceptibility of Stance Imbalance in
Argumentation [35.2494622378896]
絶対バイアス分類”が有望な目標かどうかを問う。
偏見のない文章と偏見のないテキストが主観的であるかどうかを判定する。
この種のバイアスモデルの前提条件は、人間がそもそも相対的なバイアスの差を知覚する能力である。
論文 参考訳(メタデータ) (2022-10-13T12:48:07Z) - Causal foundations of bias, disparity and fairness [0.0]
偏見を不当な直接的な因果効果として定義することを提案する。
偏差をバイアスを含む直接的あるいは間接的な因果効果として定義することを提案する。
提案した定義は、より厳密で体系的な方法でバイアスと格差を研究するために使用することができる。
論文 参考訳(メタデータ) (2022-07-27T17:33:04Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
逆行訓練は、自然言語処理におけるバイアス緩和の一般的なアプローチである。
本稿では、よりリッチな特徴を生み出すために、ターゲットクラスをインプットとして利用する、対位訓練のための拡張判別器を提案する。
論文 参考訳(メタデータ) (2022-03-12T02:22:58Z) - Statistical Equity: A Fairness Classification Objective [6.174903055136084]
エクイティの原則によって動機付けられた新しい公平性の定義を提案する。
フェアネスの定義を形式化し、適切な文脈でモチベーションを与えます。
我々は、定義の有効性を示すために、複数の自動評価と人的評価を行う。
論文 参考訳(メタデータ) (2020-05-14T23:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。