Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations
- URL: http://arxiv.org/abs/2502.18147v1
- Date: Tue, 25 Feb 2025 12:21:45 GMT
- Title: Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations
- Authors: Lucy Farnik, Tim Lawson, Conor Houghton, Laurence Aitchison,
- Abstract summary: We propose Jacobian SAEs, which yield sparsity in the input and output activations of a given model component but also sparsity in the computation (formally, the Jacobian) connecting them.<n>We find that JSAEs extract a relatively large degree of computational sparsity while preserving downstream LLM performance approximately as well as traditional SAEs.<n>This shows that the sparsity of the computational graph appears to be a property that LLMs learn through training, and suggests that JSAEs might be more suitable for understanding learned transformer computations than standard SAEs.
- Score: 21.142967037533175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse autoencoders (SAEs) have been successfully used to discover sparse and human-interpretable representations of the latent activations of LLMs. However, we would ultimately like to understand the computations performed by LLMs and not just their representations. The extent to which SAEs can help us understand computations is unclear because they are not designed to "sparsify" computations in any sense, only latent activations. To solve this, we propose Jacobian SAEs (JSAEs), which yield not only sparsity in the input and output activations of a given model component but also sparsity in the computation (formally, the Jacobian) connecting them. With a na\"ive implementation, the Jacobians in LLMs would be computationally intractable due to their size. One key technical contribution is thus finding an efficient way of computing Jacobians in this setup. We find that JSAEs extract a relatively large degree of computational sparsity while preserving downstream LLM performance approximately as well as traditional SAEs. We also show that Jacobians are a reasonable proxy for computational sparsity because MLPs are approximately linear when rewritten in the JSAE basis. Lastly, we show that JSAEs achieve a greater degree of computational sparsity on pre-trained LLMs than on the equivalent randomized LLM. This shows that the sparsity of the computational graph appears to be a property that LLMs learn through training, and suggests that JSAEs might be more suitable for understanding learned transformer computations than standard SAEs.
Related papers
- SplInterp: Improving our Understanding and Training of Sparse Autoencoders [10.800240155402417]
Sparse autoencoders (SAEs) have received considerable recent attention as tools for mechanistic interpretability.<n>There have been recent doubts about the true utility of SAEs.<n>We develop a novel proximal alternating method SGD (PAM-SGD) algorithm for training SAEs.
arXiv Detail & Related papers (2025-05-17T04:51:26Z) - Delayed Fusion: Integrating Large Language Models into First-Pass Decoding in End-to-end Speech Recognition [17.376550014426623]
This paper presents an efficient decoding approach for end-to-end automatic speech recognition (E2E-ASR) with large language models (LLMs)
We propose "delayed fusion," which applies LLM scores to ASR hypotheses with a delay during decoding.
We demonstrate that delayed fusion provides improved decoding speed and accuracy compared to shallow fusion and N-best rescoring.
arXiv Detail & Related papers (2025-01-16T03:01:50Z) - Skipping Computations in Multimodal LLMs [63.29737699997859]
This study investigates redundancy in Multimodal Large Language Models (MLLMs) during inference.
We propose different methods to skip computations, such as skipping entire blocks, FFN or self-attention layers.
Our findings validate that significant amount of computations can be avoided at inference time.
arXiv Detail & Related papers (2024-10-12T09:21:45Z) - Large Language Models and the Extended Church-Turing Thesis [0.0]
We investigate the computational power of large language models (LLMs) by the classical means of computability and computational complexity theory.
We show that any fixed (non-adaptive) LLM is computationally equivalent to a, possibly very large, deterministic finite-state transducer.
We discuss the merits of our findings in the broader context of several related disciplines and philosophies.
arXiv Detail & Related papers (2024-09-11T03:09:55Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions [49.36683223327633]
Large Language Models (LLMs) encapsulate extensive world knowledge and exhibit powerful context modeling capabilities.<n>We propose a novel framework that synergizes the strengths of LLMs with robust knowledge representation to enable effective and efficient KGC.<n>We achieve a 47% relative improvement over previous methods based on non-fine-tuned LLMs and, to our knowledge, are the first to achieve classification performance comparable to fine-tuned LLMs.
arXiv Detail & Related papers (2024-08-13T10:15:55Z) - Q-Sparse: All Large Language Models can be Fully Sparsely-Activated [93.45300714803429]
We introduce Q-Sparse, a simple yet effective approach to training sparsely-activated large language models (LLMs)
Q-Sparse enables full sparsity of activations in LLMs which can bring significant efficiency gains in inference.
We also introduce Block Q-Sparse for batch training and inference.
arXiv Detail & Related papers (2024-07-15T17:59:29Z) - $\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks [21.12437562185667]
This paper presents a new approach for scaling LLM assessment in translating formal syntax to natural language.
We use context-free grammars (CFGs) to generate out-of-distribution datasets on the fly.
We also conduct an assessment of several SOTA closed and open-source LLMs to showcase the feasibility and scalability of this paradigm.
arXiv Detail & Related papers (2024-03-27T08:08:00Z) - Not All Layers of LLMs Are Necessary During Inference [68.88671495401483]
We show that for some tasks, Large Language Models can achieve results comparable to the final output at some intermediate layers.
We propose a simple yet effective algorithm named AdaInfer to adaptively terminate the inference process for an input instance.
arXiv Detail & Related papers (2024-03-04T16:23:58Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
We introduce a general method that defines neuron activation through neuron output magnitudes and a tailored magnitude threshold.
To find the most efficient activation function for sparse computation, we propose a systematic framework.
We conduct thorough experiments on LLMs utilizing different activation functions, including ReLU, SwiGLU, ReGLU, and ReLU$2$.
arXiv Detail & Related papers (2024-02-06T08:45:51Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.