論文の概要: A Real-time Spatio-Temporal Trajectory Planner for Autonomous Vehicles with Semantic Graph Optimization
- arxiv url: http://arxiv.org/abs/2502.18151v1
- Date: Tue, 25 Feb 2025 12:27:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:32.285672
- Title: A Real-time Spatio-Temporal Trajectory Planner for Autonomous Vehicles with Semantic Graph Optimization
- Title(参考訳): セマンティックグラフ最適化を用いた自律走行車両のリアルタイム時空間軌道計画法
- Authors: Shan He, Yalong Ma, Tao Song, Yongzhi Jiang, Xinkai Wu,
- Abstract要約: グラフ最適化に基づく意味的時間的軌道計画法を提案する。
複雑な都市道路のシナリオを効果的に処理し、リアルタイムで実行することができる。
研究コミュニティのベンチマークに対応するため、コードをリリースします。
- 参考スコア(独自算出の注目度): 8.221371036055167
- License:
- Abstract: Planning a safe and feasible trajectory for autonomous vehicles in real-time by fully utilizing perceptual information in complex urban environments is challenging. In this paper, we propose a spatio-temporal trajectory planning method based on graph optimization. It efficiently extracts the multi-modal information of the perception module by constructing a semantic spatio-temporal map through separation processing of static and dynamic obstacles, and then quickly generates feasible trajectories via sparse graph optimization based on a semantic spatio-temporal hypergraph. Extensive experiments have proven that the proposed method can effectively handle complex urban public road scenarios and perform in real time. We will also release our codes to accommodate benchmarking for the research community
- Abstract(参考訳): 複雑な都市環境における知覚情報を完全に活用することで、自動運転車の安全かつ実現可能な軌道をリアルタイムで計画することは困難である。
本稿では,グラフ最適化に基づく時空間軌跡計画手法を提案する。
静的障害物と動的障害物の分離処理により意味時空間マップを構築して知覚モジュールのマルチモーダル情報を効率的に抽出し、意味時空間ハイパーグラフに基づいてスパースグラフ最適化により実現可能な軌跡を迅速に生成する。
大規模な実験により,提案手法は複雑な都市道路シナリオを効果的に処理し,リアルタイムに実行できることが証明された。
研究コミュニティのベンチマークに対応するためのコードも公開します。
関連論文リスト
- Trajectory Representation Learning on Road Networks and Grids with Spatio-Temporal Dynamics [0.8655526882770742]
軌道表現学習は、スマートシティや都市計画など分野の応用における基本的な課題である。
本稿では,時間的ダイナミクスを取り入れつつ,グリッドと道路ネットワークのモダリティを統合する新しいモデルであるTIGRを提案する。
実世界の2つのデータセット上でTIGRを評価し,両モードの組み合わせの有効性を実証した。
論文 参考訳(メタデータ) (2024-11-21T10:56:02Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Clustering Dynamics for Improved Speed Prediction Deriving from
Topographical GPS Registrations [0.0]
スパースGPSデータポイントとそれに関連する地形・道路設計特徴を用いた速度予測手法を提案する。
私たちのゴールは、地形とインフラの類似性を利用して、交通データがない地域での速度を予測する機械学習モデルをトレーニングできるかどうかを調べることです。
論文 参考訳(メタデータ) (2024-02-12T09:28:16Z) - A Privacy-Preserving Trajectory Synthesis Method Based on Vector Translation Invariance Supporting Traffic Constraints [5.178920172140948]
本稿では,トラジェクトリ間の関係に基づく集約クエリを提案し,既存の手法と比較してデータの有用性を大幅に向上させることができる。
提案手法が提案するトラジェクトリは有効性が高く,理論解析により安全かつ信頼性が高いことが示された。
論文 参考訳(メタデータ) (2023-10-08T09:35:36Z) - Learning-Initialized Trajectory Planning in Unknown Environments [4.2960463890487555]
未知の環境での自律飛行の計画には、空間軌道と時間軌道の両方を正確に計画する必要がある。
本稿ではニューラルdトラジェクトリ・プランナーを用いて最適化を導く新しい手法を提案する。
遅延計画に対する耐性を持って、堅牢なオンラインリプランニングをサポートするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-19T15:07:26Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Risk-Aware Off-Road Navigation via a Learned Speed Distribution Map [39.54575497596679]
本研究は,データから学習可能なロボットの速度のみに基づく,トラバーサビリティの新たな表現を提案する。
提案アルゴリズムは,ロボットが達成できる速度の分布を,環境セマンティクスと命令された速度に基づいて予測する。
数値シミュレーションにより,提案したリスク認識計画アルゴリズムが平均目標達成時間を短縮することを示した。
論文 参考訳(メタデータ) (2022-03-25T03:08:02Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
本研究では,大規模自律飛行とリアルタイムセマンティックマッピングを,挑戦的なアンダーキャノピー環境下で実現可能な統合システムを提案する。
我々は、スキャン全体で関連付けられ、木のトランクモデルと同様にロボットのポーズを制約するために使用されるLiDARデータから、木の幹と地面の平面を検出し、モデル化する。
ドリフト補償機構は、プランナー最適性とコントローラ安定性を維持しつつ、セマンティックSLAM出力を用いたドリフトをリアルタイムで最小化するように設計されている。
論文 参考訳(メタデータ) (2021-09-14T07:24:53Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
複数の目的地間でリアルタイムに個別の避難経路を生成する屋内避難のための渋滞対応ルーティングソリューションを提案する。
建物内の混雑分布をモデル化するために、ユーザエンド拡張現実(AR)デバイスから避難者の位置を集約して、オンザフライで取得した人口密度マップを用いる。
論文 参考訳(メタデータ) (2020-04-25T22:54:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。