Recurrent Neural Networks for Dynamic VWAP Execution: Adaptive Trading Strategies with Temporal Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2502.18177v1
- Date: Tue, 25 Feb 2025 13:11:24 GMT
- Title: Recurrent Neural Networks for Dynamic VWAP Execution: Adaptive Trading Strategies with Temporal Kolmogorov-Arnold Networks
- Authors: Remi Genet,
- Abstract summary: Execution of Volume Weighted Average Price (VWAP) orders remains a critical challenge in modern financial markets.<n>This paper develops a dynamic neural VWAP framework that adapts to evolving market conditions in real time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The execution of Volume Weighted Average Price (VWAP) orders remains a critical challenge in modern financial markets, particularly as trading volumes and market complexity continue to increase. In my previous work arXiv:2502.13722, I introduced a novel deep learning approach that demonstrated significant improvements over traditional VWAP execution methods by directly optimizing the execution problem rather than relying on volume curve predictions. However, that model was static because it employed the fully linear approach described in arXiv:2410.21448, which is not designed for dynamic adjustment. This paper extends that foundation by developing a dynamic neural VWAP framework that adapts to evolving market conditions in real time. We introduce two key innovations: first, the integration of recurrent neural networks to capture complex temporal dependencies in market dynamics, and second, a sophisticated dynamic adjustment mechanism that continuously optimizes execution decisions based on market feedback. The empirical analysis, conducted across five major cryptocurrency markets, demonstrates that this dynamic approach achieves substantial improvements over both traditional methods and our previous static implementation, with execution performance gains of 10 to 15% in liquid markets and consistent outperformance across varying conditions. These results suggest that adaptive neural architectures can effectively address the challenges of modern VWAP execution while maintaining computational efficiency suitable for practical deployment.
Related papers
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.
Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.
Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.
We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.
We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - Robust and Efficient Deep Hedging via Linearized Objective Neural Network [9.658615377672929]
We propose Deep Hedging with Linearized-objective Neural Network (DHLNN), a robust and generalizable framework.<n>DHLNN stabilizes the training process, accelerates convergence, and improves robustness to noisy financial data.<n>We show that DHLNN achieves faster convergence, improved stability, and superior hedging performance across diverse market scenarios.
arXiv Detail & Related papers (2025-02-25T01:23:21Z) - Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve [0.0]
Volume-Weighted Average Price (VWAP) is arguably the most prevalent benchmark for trade execution.<n> achieving VWAP is inherently challenging due to its dependence on two dynamic factors, volumes and prices.<n>I propose a deep learning framework that directly optimize the VWAP execution objective by bypassing the intermediate step of volume curve prediction.
arXiv Detail & Related papers (2025-02-19T13:49:51Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Improved deep learning of chaotic dynamical systems with multistep penalty losses [0.0]
Predicting the long-term behavior of chaotic systems remains a formidable challenge.
This paper introduces a novel framework that addresses these challenges by leveraging the recently proposed multi-step penalty operators.
arXiv Detail & Related papers (2024-10-08T00:13:57Z) - RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder
for Stock Returns Prediction [5.281288833470249]
RVRAE is a probabilistic approach that addresses the temporal dependencies and noise in market data.
It is adept at risk modeling in volatile stock markets, estimating variances from latent space distributions while also predicting returns.
arXiv Detail & Related papers (2024-03-04T21:48:32Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
We investigate the dynamics-aware adversarial attack problem of adaptive neural networks.
We propose a Leaded Gradient Method (LGM) and show the significant effects of the lagged gradient.
Our LGM achieves impressive adversarial attack performance compared with the dynamic-unaware attack methods.
arXiv Detail & Related papers (2022-10-15T01:32:08Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
We present two classes of models, one with neural networks as reward estimators, and the other with energy based models.
We show that both techniques outperform well-known standard algorithms, where energy based models have the best overall performance.
This provides practitioners with new techniques that perform well in static and dynamic settings, and are particularly well suited to non-linear scenarios with continuous action spaces.
arXiv Detail & Related papers (2022-10-12T15:09:45Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Value Iteration in Continuous Actions, States and Time [99.00362538261972]
We propose a continuous fitted value iteration (cFVI) algorithm for continuous states and actions.
The optimal policy can be derived for non-linear control-affine dynamics.
Videos of the physical system are available at urlhttps://sites.google.com/view/value-iteration.
arXiv Detail & Related papers (2021-05-10T21:40:56Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.