Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve
- URL: http://arxiv.org/abs/2502.13722v1
- Date: Wed, 19 Feb 2025 13:49:51 GMT
- Title: Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve
- Authors: Remi Genet,
- Abstract summary: Volume-Weighted Average Price (VWAP) is arguably the most prevalent benchmark for trade execution.
achieving VWAP is inherently challenging due to its dependence on two dynamic factors, volumes and prices.
I propose a deep learning framework that directly optimize the VWAP execution objective by bypassing the intermediate step of volume curve prediction.
- Score: 0.0
- License:
- Abstract: Volume-Weighted Average Price (VWAP) is arguably the most prevalent benchmark for trade execution as it provides an unbiased standard for comparing performance across market participants. However, achieving VWAP is inherently challenging due to its dependence on two dynamic factors, volumes and prices. Traditional approaches typically focus on forecasting the market's volume curve, an assumption that may hold true under steady conditions but becomes suboptimal in more volatile environments or markets such as cryptocurrency where prediction error margins are higher. In this study, I propose a deep learning framework that directly optimizes the VWAP execution objective by bypassing the intermediate step of volume curve prediction. Leveraging automatic differentiation and custom loss functions, my method calibrates order allocation to minimize VWAP slippage, thereby fully addressing the complexities of the execution problem. My results demonstrate that this direct optimization approach consistently achieves lower VWAP slippage compared to conventional methods, even when utilizing a naive linear model presented in arXiv:2410.21448. They validate the observation that strategies optimized for VWAP performance tend to diverge from accurate volume curve predictions and thus underscore the advantage of directly modeling the execution objective. This research contributes a more efficient and robust framework for VWAP execution in volatile markets, illustrating the potential of deep learning in complex financial systems where direct objective optimization is crucial. Although my empirical analysis focuses on cryptocurrency markets, the underlying principles of the framework are readily applicable to other asset classes such as equities.
Related papers
- Transfer Learning for Nonparametric Contextual Dynamic Pricing [17.420508136662257]
Dynamic pricing strategies are crucial for firms to maximize revenue by adjusting prices based on market conditions and customer characteristics.
One promising approach to overcome this limitation is to leverage information from related products or markets to inform the focal pricing decisions.
We propose a novel Transfer Learning for Dynamic Pricing (TLDP) algorithm that can effectively leverage pre-collected data from a source domain to enhance pricing decisions in the target domain.
arXiv Detail & Related papers (2025-01-31T01:05:04Z) - $f$-PO: Generalizing Preference Optimization with $f$-divergence Minimization [54.94545757220999]
$f$-PO is a novel framework that generalizes and extends existing approaches.
We conduct experiments on state-of-the-art language models using benchmark datasets.
arXiv Detail & Related papers (2024-10-29T02:11:45Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - OptiGrad: A Fair and more Efficient Price Elasticity Optimization via a Gradient Based Learning [7.145413681946911]
This paper presents a novel approach to optimizing profit margins in non-life insurance markets through a gradient descent-based method.
It targets three key objectives: 1) maximizing profit margins, 2) ensuring conversion rates, and 3) enforcing fairness criteria such as demographic parity (DP)
arXiv Detail & Related papers (2024-04-16T04:21:59Z) - ZeroSwap: Data-driven Optimal Market Making in DeFi [23.671367118750872]
Automated Market Makers (AMMs) are major centers of matching liquidity supply and demand in Decentralized Finance.
We propose the first optimal Bayesian and the first model-free data-driven algorithm to optimally track the external price of the asset.
arXiv Detail & Related papers (2023-10-13T21:28:19Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Hierarchical Deep Reinforcement Learning for VWAP Strategy Optimization [9.430129571478629]
We propose a deep learning and hierarchical reinforcement learning architecture to capture market patterns and execute orders from different temporal scales.
Our approach outperforms baselines in terms of VWAP slippage, with an average cost saving of 1.16 base points compared to the optimal baseline.
arXiv Detail & Related papers (2022-12-11T07:35:26Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.