From ChatGPT to DeepSeek: Can LLMs Simulate Humanity?
- URL: http://arxiv.org/abs/2502.18210v1
- Date: Tue, 25 Feb 2025 13:54:47 GMT
- Title: From ChatGPT to DeepSeek: Can LLMs Simulate Humanity?
- Authors: Qian Wang, Zhenheng Tang, Bingsheng He,
- Abstract summary: Large Language Models (LLMs) have become a promising method for exploring complex human social behaviors.<n>Recent studies highlight discrepancies between simulated and real-world interactions.
- Score: 32.93460040317926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation powered by Large Language Models (LLMs) has become a promising method for exploring complex human social behaviors. However, the application of LLMs in simulations presents significant challenges, particularly regarding their capacity to accurately replicate the complexities of human behaviors and societal dynamics, as evidenced by recent studies highlighting discrepancies between simulated and real-world interactions. We rethink LLM-based simulations by emphasizing both their limitations and the necessities for advancing LLM simulations. By critically examining these challenges, we aim to offer actionable insights and strategies for enhancing the applicability of LLM simulations in human society in the future.
Related papers
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
We introduce SocioVerse, an agent-driven world model for social simulation.
Our framework features four powerful alignment components and a user pool of 10 million real individuals.
Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - LLM Social Simulations Are a Promising Research Method [4.6456873975541635]
We argue that the promise of large language model (LLM) social simulations can be achieved by addressing five tractable challenges.
We believe that LLM social simulations can already be used for exploratory research, such as pilot experiments for psychology, economics, sociology, and marketing.
arXiv Detail & Related papers (2025-04-03T03:01:26Z) - What Limits LLM-based Human Simulation: LLMs or Our Design? [43.54008528543768]
We argue that advancing LLM-based human simulation requires addressing both LLM's inherent limitations and simulation framework design challenges.<n>To support further research in this field, we provide a curated collection of LLM-based human simulation resources.
arXiv Detail & Related papers (2025-01-15T04:59:49Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and Opportunities [0.0]
Integrating large language models with agent-based simulations offers a transformational potential for understanding complex social systems.
We explore architectures and methods to systematically develop LLM-augmented social simulations.
We conclude that integrating LLMs with agent-based simulations offers a powerful toolset for researchers and scientists.
arXiv Detail & Related papers (2024-05-08T08:57:54Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
Existing work highlights the ability of Large Language Models to address complex reasoning tasks and mimic human communication.
We propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies.
We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios.
arXiv Detail & Related papers (2024-02-13T19:46:39Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.<n>Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.<n>These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation [46.42384207122049]
We design SimulateBench to evaluate the believability of large language models (LLMs) when simulating human behaviors.
Based on SimulateBench, we evaluate the performances of 10 widely used LLMs when simulating characters.
arXiv Detail & Related papers (2023-12-28T16:51:11Z) - CoMPosT: Characterizing and Evaluating Caricature in LLM Simulations [61.9212914612875]
We present a framework to characterize LLM simulations using four dimensions: Context, Model, Persona, and Topic.
We use this framework to measure open-ended LLM simulations' susceptibility to caricature, defined via two criteria: individuation and exaggeration.
We find that for GPT-4, simulations of certain demographics (political and marginalized groups) and topics (general, uncontroversial) are highly susceptible to caricature.
arXiv Detail & Related papers (2023-10-17T18:00:25Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.