Multi-label out-of-distribution detection via evidential learning
- URL: http://arxiv.org/abs/2502.18224v1
- Date: Tue, 25 Feb 2025 14:08:35 GMT
- Title: Multi-label out-of-distribution detection via evidential learning
- Authors: Eduardo Aguilar, Bogdan Raducanu, Petia Radeva,
- Abstract summary: We propose a CNN architecture that uses a Beta Evidential Neural Network to compute both the likelihood and the predictive uncertainty of the samples.<n>Based on these results, we propose two new uncertainty-based scores for OOD data detection: (i) OOD - score Max, based on the maximum evidence; and (ii) OOD - Sum, which considers the evidence from all outputs.
- Score: 8.256216638460455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A crucial requirement for machine learning algorithms is not only to perform well, but also to show robustness and adaptability when encountering novel scenarios. One way to achieve these characteristics is to endow the deep learning models with the ability to detect out-of-distribution (OOD) data, i.e. data that belong to distributions different from the one used during their training. It is even a more complicated situation, when these data usually are multi-label. In this paper, we propose an approach based on evidential deep learning in order to meet these challenges applied to visual recognition problems. More concretely, we designed a CNN architecture that uses a Beta Evidential Neural Network to compute both the likelihood and the predictive uncertainty of the samples. Based on these results, we propose afterwards two new uncertainty-based scores for OOD data detection: (i) OOD - score Max, based on the maximum evidence; and (ii) OOD score - Sum, which considers the evidence from all outputs. Extensive experiments have been carried out to validate the proposed approach using three widely-used datasets: PASCAL-VOC, MS-COCO and NUS-WIDE, demonstrating its outperformance over several State-of-the-Art methods.
Related papers
- Gradient-Regularized Out-of-Distribution Detection [28.542499196417214]
One of the challenges for neural networks in real-life applications is the overconfident errors these models make when the data is not from the original training distribution.
We propose the idea of leveraging the information embedded in the gradient of the loss function during training to enable the network to learn a desired OOD score for each sample.
We also develop a novel energy-based sampling method to allow the network to be exposed to more informative OOD samples during the training phase.
arXiv Detail & Related papers (2024-04-18T17:50:23Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Beyond Mahalanobis-Based Scores for Textual OOD Detection [32.721317681946246]
We introduce TRUSTED, a new OOD detector for classifiers based on Transformer architectures that meets operational requirements.
The efficiency of TRUSTED relies on the fruitful idea that all hidden layers carry relevant information to detect OOD examples.
Our experiments involve 51k model configurations, including various checkpoints, seeds, datasets, and demonstrate that TRUSTED achieves state-of-the-art performances.
arXiv Detail & Related papers (2022-11-24T10:51:58Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
This paper proposes a simple Test-time Linear Training (ETLT) method for OOD detection.
We find that the probabilities of input images being out-of-distribution are surprisingly linearly correlated to the features extracted by neural networks.
We propose an online variant of the proposed method, which achieves promising performance and is more practical in real-world applications.
arXiv Detail & Related papers (2022-07-17T16:02:58Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
We introduce Igeood, an effective method for detecting out-of-distribution (OOD) samples.
Igeood applies to any pre-trained neural network, works under various degrees of access to the machine learning model.
We show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
arXiv Detail & Related papers (2022-03-15T11:26:35Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.