論文の概要: BottleHumor: Self-Informed Humor Explanation using the Information Bottleneck Principle
- arxiv url: http://arxiv.org/abs/2502.18331v1
- Date: Sat, 22 Feb 2025 11:52:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 18:40:49.944208
- Title: BottleHumor: Self-Informed Humor Explanation using the Information Bottleneck Principle
- Title(参考訳): BottleHumor:インフォメーション・ボトルネックの原理を用いた自己インフォームド・ユーモアの解説
- Authors: EunJeong Hwang, Peter West, Vered Shwartz,
- Abstract要約: 本稿では,視覚と言語モデルから関連する世界知識を抽出する情報ボトルネック原理に着想を得た手法を提案する。
3つのデータセットに対する実験により,本手法の有効性が確認された。
本手法は将来,関連する世界知識の抽出と条件付けの恩恵を受けることができる追加のタスクに適応することができる。
- 参考スコア(独自算出の注目度): 23.430250348651732
- License:
- Abstract: Humor is prevalent in online communications and it often relies on more than one modality (e.g., cartoons and memes). Interpreting humor in multimodal settings requires drawing on diverse types of knowledge, including metaphorical, sociocultural, and commonsense knowledge. However, identifying the most useful knowledge remains an open question. We introduce \method{}, a method inspired by the information bottleneck principle that elicits relevant world knowledge from vision and language models which is iteratively refined for generating an explanation of the humor in an unsupervised manner. Our experiments on three datasets confirm the advantage of our method over a range of baselines. Our method can further be adapted in the future for additional tasks that can benefit from eliciting and conditioning on relevant world knowledge and open new research avenues in this direction.
- Abstract(参考訳): 噂はオンラインコミュニケーションで一般的であり、複数のモダリティ(漫画やミームなど)に依存していることが多い。
ユーモアをマルチモーダルな環境で解釈するには、比喩的、社会文化的、常識的な知識など、様々な種類の知識が必要とされる。
しかし、最も有用な知識を特定することは、未解決の問題である。
本稿では,視覚と言語モデルから関連する世界知識を引き出す,情報ボトルネックの原理にインスパイアされた手法である 'method{} を紹介する。
3つのデータセットに対する実験により,本手法の有効性が確認された。
本手法は今後,関連する世界知識を抽出・条件づけし,新たな研究の道を開くことの恩恵を受けることができる。
関連論文リスト
- SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge [60.76719375410635]
44Kの質問と10Kの状況からなる新しいベンチマーク(SOK-Bench)を提案する。
推論プロセスは、位置する知識と問題解決のための一般的な知識を理解し、適用するために必要である。
質問応答ペアと推論プロセスを生成し,最後に品質保証に関する手作業によるレビューを行った。
論文 参考訳(メタデータ) (2024-05-15T21:55:31Z) - Combo of Thinking and Observing for Outside-Knowledge VQA [13.838435454270014]
外部知識の視覚的質問応答は、買収とオープンエンドの現実世界の知識の使用の両方を必要とする難しいタスクである。
本稿では,モダリティ空間を自然言語空間と同じ空間に制約することに着想を得た。
本稿では,マルチモーダルエンコーダ,テキストエンコーダ,応答デコーダからなる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-10T18:32:32Z) - Incorporating Explicit Knowledge in Pre-trained Language Models for
Passage Re-ranking [32.22697200984185]
本稿では,新しい知識グラフ蒸留法を提案し,問合せと通過の橋渡しとして知識メタグラフを得る。
PLMをテキストエンコーダとして,知識メタグラフを知識エンコーダとして,グラフニューラルネットワークとして採用した。
論文 参考訳(メタデータ) (2022-04-25T14:07:28Z) - Knowledge-Grounded Dialogue Generation with a Unified Knowledge
Representation [78.85622982191522]
既存のシステムは、トレーニングデータでカバーされる限られたトピックのために、目に見えないトピックでうまく機能しない。
本稿では,異なる知識源を均質化した言語モデルであるPLUGについて述べる。
完全に教師された設定の下で最先端のメソッドと同等のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-12-15T07:11:02Z) - K-XLNet: A General Method for Combining Explicit Knowledge with Language
Model Pretraining [5.178964604577459]
明示的な知識を活用することで、モデルの事前訓練を改善することに重点を置いています。
具体的には、まず知識グラフ(KG)から知識事実をマッチングし、次に直接変換器に知識命令層を追加する。
実験の結果,変圧器に外部知識を加えるだけで,多くのNLPタスクにおける学習性能が向上することが示された。
論文 参考訳(メタデータ) (2021-03-25T06:14:18Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
VQAの最も難しい質問の1つは、質問に答えるために画像に存在しない外部の知識を必要とする場合です。
本研究では,解答に必要な知識が与えられたり記入されたりしないオープンドメイン知識を,トレーニング時やテスト時にも検討する。
知識表現と推論には2つのタイプがあります。
まず、トランスベースのモデルで教師なし言語事前トレーニングと教師付きトレーニングデータから効果的に学ぶことができる暗黙的な知識。
論文 参考訳(メタデータ) (2020-12-20T20:13:02Z) - Improving Commonsense Question Answering by Graph-based Iterative
Retrieval over Multiple Knowledge Sources [26.256653692882715]
疑問に答えるシステムにおいて、コモンセンスを効果的に活用する方法はまだ検討中である。
本研究では,ConceptNet,Wikipedia,Cambridge Dictionaryを統合した質問応答手法を提案する。
学習済みの言語モデルを用いて、質問を符号化し、知識と選択を検索し、回答の選択を意識した注意機構を提案する。
論文 参考訳(メタデータ) (2020-11-05T08:50:43Z) - Question Answering over Knowledge Base using Language Model Embeddings [0.0]
本稿では,知識ベース質問回答タスクにおける事前学習言語モデルの利用に焦点を当てる。
さらに,これらの埋め込みを知識ベースから質問まで,双方向の注意機構で微調整した。
提案手法は,質問事項を表現するためのマルチヘッドアテンション機構を備えた,単純な畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2020-10-17T22:59:34Z) - Language Generation with Multi-Hop Reasoning on Commonsense Knowledge
Graph [124.45799297285083]
知識グラフの構造的情報と意味的情報の両方を活用することで、コモンセンスを意識したテキスト生成が促進されると主張している。
本稿では,外部コモンセンス知識グラフから抽出したマルチリレーショナルパスに基づいて,動的マルチホップ推論を用いた事前学習モデルを実現するマルチホップ推論フロー(GRF)の生成を提案する。
論文 参考訳(メタデータ) (2020-09-24T13:55:32Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
我々は、機械読解の理解を改善するために、常識知識を抽出することを目指している。
構造化知識を文脈内に配置することで,関係を暗黙的に表現することを提案する。
我々は,教師の学習パラダイムを用いて,複数種類の文脈的知識を学生機械読取機に注入する。
論文 参考訳(メタデータ) (2020-09-12T17:20:01Z) - Unsupervised Commonsense Question Answering with Self-Talk [71.63983121558843]
本稿では,コモンセンスタスクの代替として,セルフトークに基づく教師なしフレームワークを提案する。
探索に基づく探索学習にインスパイアされた我々のアプローチは、質問を求める多くの情報で言語モデルに問い合わせる。
実験結果から,ゼロショット言語モデルベースラインの性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-11T20:43:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。