Structural Alignment Improves Graph Test-Time Adaptation
- URL: http://arxiv.org/abs/2502.18334v3
- Date: Thu, 05 Jun 2025 14:44:56 GMT
- Title: Structural Alignment Improves Graph Test-Time Adaptation
- Authors: Hans Hao-Hsun Hsu, Shikun Liu, Han Zhao, Pan Li,
- Abstract summary: We introduce Test-Time Structural Alignment (TSA), a novel algorithm for Graph Test-Time Adaptation (GTTA)<n>TSA aligns graph structures during inference without accessing the source data.<n>Experiments on synthetic and real-world datasets demonstrate TSA's consistent outperformance of both non-graph TTA methods and state-of-the-art GTTA baselines.
- Score: 17.564393890432193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based learning excels at capturing interaction patterns in diverse domains like recommendation, fraud detection, and particle physics. However, its performance often degrades under distribution shifts, especially those altering network connectivity. Current methods to address these shifts typically require retraining with the source dataset, which is often infeasible due to computational or privacy limitations. We introduce Test-Time Structural Alignment (TSA), a novel algorithm for Graph Test-Time Adaptation (GTTA) that aligns graph structures during inference without accessing the source data. Grounded in a theoretical understanding of graph data distribution shifts, TSA employs three synergistic strategies: uncertainty-aware neighborhood weighting to accommodate neighbor label distribution shifts, adaptive balancing of self-node and aggregated neighborhood representations based on their signal-to-noise ratio, and decision boundary refinement to correct residual label and feature shifts. Extensive experiments on synthetic and real-world datasets demonstrate TSA's consistent outperformance of both non-graph TTA methods and state-of-the-art GTTA baselines.
Related papers
- Smoothness Really Matters: A Simple Yet Effective Approach for Unsupervised Graph Domain Adaptation [28.214010408550394]
Unsupervised Graph Domain Adaptation (UGDA) seeks to bridge distribution shifts between domains by transferring knowledge from labeled source graphs to given unlabeled target graphs.<n>We introduce a novel approach for UGDA called Target-Domain Structural Smoothing ( TDSS)<n> TDSS is a simple and effective method designed to perform structural smoothing directly on the target graph.
arXiv Detail & Related papers (2024-12-16T10:56:58Z) - Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation [66.40525136929398]
Test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain, without re-accessing the source domain.<n>We propose Matcha, an innovative framework designed for effective and efficient adaptation to structure shifts in graphs.<n>We validate the effectiveness of Matcha on both synthetic and real-world datasets, demonstrating its robustness across various combinations of structure and attribute shifts.
arXiv Detail & Related papers (2024-10-09T15:15:40Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph [24.44321658238713]
Graph Neural Networks (GNNs) are widely used for node classification tasks but often fail to generalize when training and test nodes come from different distributions.
We introduce the Topology-Aware Dynamic Reweighting (TAR) framework, which dynamically adjusts sample weights through gradient flow in the Wasserstein space during training.
Our framework's superiority is demonstrated through standard testing on four graph OOD datasets and three class-imbalanced node classification datasets.
arXiv Detail & Related papers (2024-06-03T07:32:05Z) - Pairwise Alignment Improves Graph Domain Adaptation [16.626928606474173]
This work delves into Graph Domain Adaptation (GDA) to address the unique complexities of distribution shifts over graph data.
We propose a novel, theoretically principled method, Pairwise Alignment (Pair-Align) to counter graph structure shift.
Our method demonstrates superior performance in real-world applications, including node classification with region shift in social networks.
arXiv Detail & Related papers (2024-03-02T04:31:28Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Structural Re-weighting Improves Graph Domain Adaptation [13.019371337183202]
This work examines different impacts of distribution shifts caused by either graph structure or node attributes.
A novel approach, called structural reweighting (StruRW), is proposed to address this issue and is tested on synthetic graphs, four benchmark datasets, and a new application in high energy physics.
arXiv Detail & Related papers (2023-06-05T20:11:30Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
We find graph-based methods in the visible-infrared person re-identification task (VI-ReID) suffer from bad generalization because of two issues.
The well-trained input features weaken the learning of graph topology, making it not generalized enough during the inference process.
We propose a Counterfactual Intervention Feature Transfer (CIFT) method to tackle these problems.
arXiv Detail & Related papers (2022-08-01T16:15:31Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Stable Prediction on Graphs with Agnostic Distribution Shift [105.12836224149633]
Graph neural networks (GNNs) have been shown to be effective on various graph tasks with randomly separated training and testing data.
In real applications, however, the distribution of training graph might be different from that of the test one.
We propose a novel stable prediction framework for GNNs, which permits both locally and globally stable learning and prediction on graphs.
arXiv Detail & Related papers (2021-10-08T02:45:47Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Efficient and Stable Graph Scattering Transforms via Pruning [86.76336979318681]
Graph scattering transforms ( GSTs) offer training-free deep GCN models that extract features from graph data.
The price paid by GSTs is exponential complexity in space and time that increases with the number of layers.
The present work addresses the complexity limitation of GSTs by introducing an efficient so-termed pruned (p) GST approach.
arXiv Detail & Related papers (2020-01-27T16:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.