OmniAlign-V: Towards Enhanced Alignment of MLLMs with Human Preference
- URL: http://arxiv.org/abs/2502.18411v2
- Date: Sat, 01 Mar 2025 03:09:28 GMT
- Title: OmniAlign-V: Towards Enhanced Alignment of MLLMs with Human Preference
- Authors: Xiangyu Zhao, Shengyuan Ding, Zicheng Zhang, Haian Huang, Maosong Cao, Weiyun Wang, Jiaqi Wang, Xinyu Fang, Wenhai Wang, Guangtao Zhai, Haodong Duan, Hua Yang, Kai Chen,
- Abstract summary: Recent advancements in open-source multi-modal large language models (MLLMs) have primarily focused on enhancing foundational capabilities.<n>This paper introduces OmniAlign-V, a dataset of 200K high-quality training samples featuring diverse images, complex questions, and varied response formats.<n> Experimental results show that finetuning MLLMs with OmniAlign-V, using Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO), significantly enhances human preference alignment.
- Score: 80.36831779302148
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in open-source multi-modal large language models (MLLMs) have primarily focused on enhancing foundational capabilities, leaving a significant gap in human preference alignment. This paper introduces OmniAlign-V, a comprehensive dataset of 200K high-quality training samples featuring diverse images, complex questions, and varied response formats to improve MLLMs' alignment with human preferences. We also present MM-AlignBench, a human-annotated benchmark specifically designed to evaluate MLLMs' alignment with human values. Experimental results show that finetuning MLLMs with OmniAlign-V, using Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO), significantly enhances human preference alignment while maintaining or enhancing performance on standard VQA benchmarks, preserving their fundamental capabilities. Our datasets, benchmark, code and checkpoints have been released at https://github.com/PhoenixZ810/OmniAlign-V.
Related papers
- Evaluating Personalized Tool-Augmented LLMs from the Perspectives of Personalization and Proactivity [17.723293304671877]
We introduce a novel benchmark ETAPP for evaluating personalized tool invocation.
To improve the accuracy of our evaluation, we propose a key-point-based evaluation method.
The effectiveness of our preference-setting and key-point-based evaluation method is also validated.
arXiv Detail & Related papers (2025-03-02T07:36:22Z) - MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
We introduce MM-RLHF, a dataset containing $mathbf120k$ fine-grained, human-annotated preference comparison pairs.
We propose several key innovations to improve the quality of reward models and the efficiency of alignment algorithms.
Our approach is rigorously evaluated across $mathbf10$ distinct dimensions and $mathbf27$ benchmarks.
arXiv Detail & Related papers (2025-02-14T18:59:51Z) - Preference VLM: Leveraging VLMs for Scalable Preference-Based Reinforcement Learning [17.59802090014789]
We introduce PrefVLM, a framework that integrates Vision-Language Models (VLMs) with selective human feedback.<n>Our method leverages VLMs to generate initial preference labels, which are then filtered to identify uncertain cases for targeted human annotation.<n> Experiments on Meta-World manipulation tasks demonstrate that PrefVLM achieves comparable or superior success rates to state-of-the-art methods.
arXiv Detail & Related papers (2025-02-03T18:50:15Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.<n>Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling [34.32744849352087]
We propose a method that sequentially fine-tunes large language models to align with human preferences.
We theoretically derive closed-form optimal SPO policy and loss function.
Empirical results on LLMs of different size and multiple evaluation datasets demonstrate that SPO successfully aligns LLMs across multiple dimensions of human preferences.
arXiv Detail & Related papers (2024-05-21T12:47:17Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - On Diversified Preferences of Large Language Model Alignment [51.26149027399505]
This paper presents the first quantitative analysis of the experimental scaling law for reward models with varying sizes.
Our analysis reveals that the impact of diversified human preferences depends on both model size and data size.
Larger models with sufficient capacity mitigate the negative effects of diverse preferences, while smaller models struggle to accommodate them.
arXiv Detail & Related papers (2023-12-12T16:17:15Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.