ToMCAT: Theory-of-Mind for Cooperative Agents in Teams via Multiagent Diffusion Policies
- URL: http://arxiv.org/abs/2502.18438v1
- Date: Tue, 25 Feb 2025 18:31:55 GMT
- Title: ToMCAT: Theory-of-Mind for Cooperative Agents in Teams via Multiagent Diffusion Policies
- Authors: Pedro Sequeira, Vidyasagar Sadhu, Melinda Gervasio,
- Abstract summary: ToMCAT (Theory-of-Mind for Cooperative Agents in Teams) is a new framework for generating ToM-conditioned trajectories.<n>It combines a meta-learning mechanism, that performs ToM reasoning over teammates' underlying goals and future behavior, with a multiagent denoising-diffusion model.
- Score: 2.6490401904186758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present ToMCAT (Theory-of-Mind for Cooperative Agents in Teams), a new framework for generating ToM-conditioned trajectories. It combines a meta-learning mechanism, that performs ToM reasoning over teammates' underlying goals and future behavior, with a multiagent denoising-diffusion model, that generates plans for an agent and its teammates conditioned on both the agent's goals and its teammates' characteristics, as computed via ToM. We implemented an online planning system that dynamically samples new trajectories (replans) from the diffusion model whenever it detects a divergence between a previously generated plan and the current state of the world. We conducted several experiments using ToMCAT in a simulated cooking domain. Our results highlight the importance of the dynamic replanning mechanism in reducing the usage of resources without sacrificing team performance. We also show that recent observations about the world and teammates' behavior collected by an agent over the course of an episode combined with ToM inferences are crucial to generate team-aware plans for dynamic adaptation to teammates, especially when no prior information is provided about them.
Related papers
- Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
Current agent frameworks often suffer from dependencies on single-agent execution and lack robust inter- module communication.
We present a framework for training large language models as collaborative agents to enable coordinated behaviors in cooperative MARL.
A propagation network transforms broadcast intentions into teammate-specific communication messages, sharing relevant goals with designated teammates.
arXiv Detail & Related papers (2024-07-17T13:14:00Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
MADiff is a diffusion-based multi-agent learning framework.
It works as both a decentralized policy and a centralized controller.
Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
We introduce hybrid execution in multi-agent reinforcement learning (MARL)
MARL is a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time.
We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations.
arXiv Detail & Related papers (2022-10-12T14:58:32Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
We propose an adaptive training algorithm to develop effective collaboration between agents with ToM.
We evaluate our algorithms with two games, where our algorithm surpasses all previous decentralized execution algorithms without modeling ToM.
arXiv Detail & Related papers (2021-09-30T23:28:00Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
We propose a semi-communication method to enable agents can exchange information without communication.
Inspired by the neighborhood cognitive consistency, we propose a group-based module to divide adjacent agents into a small group and minimize in-group agents' beliefs.
Results reveal that the proposed method achieves a significant improvement in the SMAC benchmark.
arXiv Detail & Related papers (2020-08-20T07:07:20Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.