A Contemporary Survey of Large Language Model Assisted Program Analysis
- URL: http://arxiv.org/abs/2502.18474v1
- Date: Wed, 05 Feb 2025 14:27:17 GMT
- Title: A Contemporary Survey of Large Language Model Assisted Program Analysis
- Authors: Jiayimei Wang, Tao Ni, Wei-Bin Lee, Qingchuan Zhao,
- Abstract summary: Large Language Models (LLMs) have gained attention due to their context-aware capabilities in code comprehension.<n>Despite existing surveys on LLM applications in cybersecurity, comprehensive reviews specifically addressing their role in program analysis remain scarce.<n>This survey aims to demonstrate the potential of LLMs in advancing program analysis practices and offer actionable insights for security researchers seeking to enhance detection frameworks or develop domain-specific models.
- Score: 3.910688513435537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing complexity of software systems has driven significant advancements in program analysis, as traditional methods unable to meet the demands of modern software development. To address these limitations, deep learning techniques, particularly Large Language Models (LLMs), have gained attention due to their context-aware capabilities in code comprehension. Recognizing the potential of LLMs, researchers have extensively explored their application in program analysis since their introduction. Despite existing surveys on LLM applications in cybersecurity, comprehensive reviews specifically addressing their role in program analysis remain scarce. In this survey, we systematically review the application of LLMs in program analysis, categorizing the existing work into static analysis, dynamic analysis, and hybrid approaches. Moreover, by examining and synthesizing recent studies, we identify future directions and challenges in the field. This survey aims to demonstrate the potential of LLMs in advancing program analysis practices and offer actionable insights for security researchers seeking to enhance detection frameworks or develop domain-specific models.
Related papers
- BinMetric: A Comprehensive Binary Analysis Benchmark for Large Language Models [50.17907898478795]
We introduce BinMetric, a benchmark designed to evaluate the performance of large language models on binary analysis tasks.<n>BinMetric comprises 1,000 questions derived from 20 real-world open-source projects across 6 practical binary analysis tasks.<n>Our empirical study on this benchmark investigates the binary analysis capabilities of various state-of-the-art LLMs, revealing their strengths and limitations in this field.
arXiv Detail & Related papers (2025-05-12T08:54:07Z) - Large Language Model (LLM) for Software Security: Code Analysis, Malware Analysis, Reverse Engineering [3.1195311942826303]
Large Language Models (LLMs) have emerged as powerful tools in cybersecurity.
LLMs offer advanced capabilities in malware detection, generation, and real-time monitoring.
arXiv Detail & Related papers (2025-04-07T22:32:46Z) - Bridging Language Models and Financial Analysis [49.361943182322385]
The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing.
Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts.
Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry.
arXiv Detail & Related papers (2025-03-14T01:35:20Z) - Applications and Implications of Large Language Models in Qualitative Analysis: A New Frontier for Empirical Software Engineering [0.46426852157920906]
The study emphasizes the need for structured strategies and guidelines to optimize LLM use in qualitative research within software engineering.<n>While LLMs show promise in supporting qualitative analysis, human expertise remains crucial for interpreting data, and ongoing exploration of best practices will be vital for their successful integration into empirical software engineering research.
arXiv Detail & Related papers (2024-12-09T15:17:36Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools.<n>This study systematically maps the literature on the use of LLMs for qualitative research.<n>Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes.
arXiv Detail & Related papers (2024-11-18T21:28:00Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
Multimodal Large Language Models (MLLMs) have become a transformative force in the field of artificial intelligence.
This survey aims to provide a systematic review of benchmark tests and evaluation methods for MLLMs.
arXiv Detail & Related papers (2024-09-17T14:35:38Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
This paper examines the application of Large Language Models in the construction of test cases within the context of software engineering.
Through a blend of qualitative and quantitative analyses, this study assesses the impact of LLMs on test case comprehensiveness, accuracy, and efficiency.
arXiv Detail & Related papers (2023-12-19T20:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.