論文の概要: LLM4EFFI: Leveraging Large Language Models to Enhance Code Efficiency and Correctness
- arxiv url: http://arxiv.org/abs/2502.18489v1
- Date: Mon, 17 Feb 2025 07:01:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 02:21:30.786005
- Title: LLM4EFFI: Leveraging Large Language Models to Enhance Code Efficiency and Correctness
- Title(参考訳): LLM4EFFI: コードの効率性と正確性を高めるために大規模言語モデルを活用する
- Authors: Tong Ye, Weigang Huang, Xuhong Zhang, Tengfei Ma, Peiyu Liu, Jianwei Yin, Wenhai Wang,
- Abstract要約: 大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを示している。
ulineLarge ulineLanguage ulineModel for Code ulineEfficiencyは、LLMが効率性と正確性の両方のバランスをとるコードを生成することができる新しいフレームワークである。
- 参考スコア(独自算出の注目度): 38.399282089600284
- License:
- Abstract: Large Language Models (LLMs), particularly Code LLMs, have demonstrated impressive performance in code generation. Current research primarily focuses on the correctness of generated code, while efficiency remains less explored. Recent works have focused on modifying the initial version of the code to improve its efficiency. However, such refinements are limited by the algorithmic design and overall logic of the initial code, resulting in only incremental improvements. In contrast, when human developers write high-quality code, they typically begin by designing several potential solutions at the logical level, evaluating various algorithms and their complexities, and then proceeding to implement and optimize the solution. In this study, we introduce \tool: \uline{L}arge \uline{L}anguage \uline{M}odel for Code \uline{Effi}ciency, a novel framework that enables LLMs to generate code that balances both efficiency and correctness. Specifically, \tool divides the efficiency optimization process into two domains: algorithmic exploration in the logic domain and implementation optimization in the code domain. The correctness of the code is then guaranteed through a synthetic test case refinement process. This approach, which prioritizes efficiency before ensuring correctness, offers a new paradigm for efficient code generation. Experiments demonstrate that \tool consistently improves both efficiency and correctness, achieving new state-of-the-art performance in code efficiency benchmarks across various LLM backbones.
- Abstract(参考訳): 大規模言語モデル(LLM)、特にコードLLMは、コード生成において素晴らしいパフォーマンスを示している。
現在の研究は主に生成されたコードの正確性に焦点を当てているが、効率性は依然として調査されていない。
最近の作業は、その効率を改善するために、コードの初期バージョンを変更することに重点を置いている。
しかし、このような改良は初期コードのアルゴリズム設計と全体的なロジックによって制限され、結果として徐々に改善されるだけである。
対照的に、人間の開発者が高品質なコードを書く場合、一般的には、いくつかの潜在的なソリューションを論理レベルで設計し、様々なアルゴリズムとその複雑さを評価し、ソリューションの実装と最適化を進めます。
本研究では,LLMが効率と正確性の両方のバランスをとるコードを生成するための,新しいフレームワークであるCode \uline{Effi}ciencyに対して, \tool: \uline{L}arge \uline{L}anguage \uline{M}odelを紹介する。
具体的には,効率最適化のプロセスを,論理領域におけるアルゴリズム探索とコード領域における実装最適化の2つの領域に分割する。
そして、コードの正確性は、合成テストケース精錬プロセスによって保証される。
このアプローチは、正確性を保証する前に効率を優先し、効率的なコード生成のための新しいパラダイムを提供する。
実験では、‘tool’は効率性と正確性の両方を一貫して改善し、様々なLLMバックボーンにわたるコード効率ベンチマークで、最先端のパフォーマンスを新たに達成している。
関連論文リスト
- PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを支援するために広く採用されている。
LLM生成コードの性能を向上させるトレーニングフリーフレームワークPerfCodeGenを提案する。
論文 参考訳(メタデータ) (2024-11-18T06:22:38Z) - Rethinking Code Refinement: Learning to Judge Code Efficiency [60.04718679054704]
大規模言語モデル(LLM)は、コードを理解して生成する素晴らしい能力を示しています。
本稿では,2つの異なる符号間の効率を判定するために訓練されたコード言語モデルに基づく新しい手法を提案する。
提案手法は,複数の改良ステップで複数のプログラミング言語に対して検証し,より効率的で少ないバージョンのコードの識別を効果的に行うことができることを示した。
論文 参考訳(メタデータ) (2024-10-29T06:17:37Z) - Effi-Code: Unleashing Code Efficiency in Language Models [17.355845751737423]
Effi-Codeは、大規模言語モデルにおけるコード生成を強化するアプローチである。
Effi-Codeは、AIシステムのコード生成を改善するためのスケーラブルで汎用的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-10-14T07:05:51Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
開発者によって書かれたコードは、通常効率上の問題に悩まされ、様々なパフォーマンス上のバグを含んでいる。
最近の研究は、タスクをシーケンス生成問題とみなし、大規模言語モデル(LLM)のようなディープラーニング(DL)技術を活用している。
改良された最適化手法の反復的洗練と発見を可能にする,SBLLM という検索ベース LLM フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T06:59:46Z) - ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness? [12.862825053595934]
ECCOは、自然言語(NL)ベースのコード生成と履歴ベースのコード編集という、2つのパラダイムを通じてプログラム効率を評価するためのベンチマークである。
実行情報の追加は機能的正確性を維持するのによく役立ち、NLフィードバックは効率を向上する。
論文 参考訳(メタデータ) (2024-07-19T05:47:40Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
大規模言語モデル(LLM)の開発は、プログラム合成のフロンティアを著しく押し上げている。
ほとんどの評価フレームワークは生成したコードの(機能的な)正しさに重点を置いています。
我々は,LLMの効率的なコード生成能力を評価するための厳格で高水準なベンチマークENAMELを開発した。
論文 参考訳(メタデータ) (2024-06-10T04:19:20Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。