論文の概要: Multi-class Seismic Building Damage Assessment from InSAR Imagery using Quadratic Variational Causal Bayesian Inference
- arxiv url: http://arxiv.org/abs/2502.18546v1
- Date: Tue, 25 Feb 2025 15:40:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:58:42.330754
- Title: Multi-class Seismic Building Damage Assessment from InSAR Imagery using Quadratic Variational Causal Bayesian Inference
- Title(参考訳): 準変動因果ベイズ推定によるInSAR画像からの多層地震被害評価
- Authors: Xuechun Li, Susu Xu,
- Abstract要約: InSARデータから多層建築物の損傷分類を抽出する新しい手法を提案する。
提案手法は,InSAR観測と地上故障モデルとビルディング関数を統合する。
提案手法は,全ての損傷カテゴリに対して高い精度(AUC > 0.93)を維持しつつ,計算オーバーヘッドを40%以上削減する。
- 参考スコア(独自算出の注目度): 3.190793775376023
- License:
- Abstract: Interferometric Synthetic Aperture Radar (InSAR) technology uses satellite radar to detect surface deformation patterns and monitor earthquake impacts on buildings. While vital for emergency response planning, extracting multi-class building damage classifications from InSAR data faces challenges: overlapping damage signatures with environmental noise, computational complexity in multi-class scenarios, and the need for rapid regional-scale processing. Our novel multi-class variational causal Bayesian inference framework with quadratic variational bounds provides rigorous approximations while ensuring efficiency. By integrating InSAR observations with USGS ground failure models and building fragility functions, our approach separates building damage signals while maintaining computational efficiency through strategic pruning. Evaluation across five major earthquakes (Haiti 2021, Puerto Rico 2020, Zagreb 2020, Italy 2016, Ridgecrest 2019) shows improved damage classification accuracy (AUC: 0.94-0.96), achieving up to 35.7% improvement over existing methods. Our approach maintains high accuracy (AUC > 0.93) across all damage categories while reducing computational overhead by over 40% without requiring extensive ground truth data.
- Abstract(参考訳): Interferometric Synthetic Aperture Radar (InSAR)技術は、衛星レーダーを用いて表面の変形パターンを検出し、建物への地震の影響を監視する。
緊急対応計画に欠かせないが、InSARデータから複数クラスの建物被害分類を抽出することは、環境騒音と重なる損傷シグネチャ、マルチクラスのシナリオにおける計算複雑性、迅速な地域規模処理の必要性といった課題に直面している。
2次変分境界を持つ新しい多クラス変分因果推定フレームワークは、効率を保ちながら厳密な近似を与える。
InSAR観測をUSGSの地盤破壊モデルと統合し、不安定度関数を構築することにより、戦略的刈り込みによる計算効率を維持しながら、損傷信号の構築を分離する。
5大地震(ハイチ2021年、プエルトリコ2020年、ザグレブ2020年、イタリア2016年、リッジクレスト2019年)で、被害分類精度(AUC: 0.94-0.96)が向上し、既存の方法よりも35.7%改善している。
提案手法は,全ての損傷カテゴリに対して高い精度(AUC > 0.93)を維持しつつ,計算オーバーヘッドを40%以上削減する。
関連論文リスト
- Deep Self-Supervised Disturbance Mapping with the OPERA Sentinel-1 Radiometric Terrain Corrected SAR Backscatter Product [41.94295877935867]
地表面の乱れのマッピングは、災害対応、資源と生態系の管理、気候適応の取り組みを支援する。
合成開口レーダ(SAR)は、気象や照明条件に関わらず、地上の連続した時系列画像を提供する、外乱マッピングのための貴重なツールである。
NASAのRemote Sensing Analysis (OPERA)プロジェクトは2023年10月にSentinel-1 (RTC-S1)データセットからほぼグローバルな測地線補正SAR後方散乱器をリリースした。
本研究では,地表面の乱れを体系的に解析するために,この新たなデータセットを利用する。
論文 参考訳(メタデータ) (2025-01-15T20:24:18Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
本研究では, 自然災害の文脈において, 建物の損傷評価を正確に行うための深層学習手法の実装について検討する。
我々は,低品質・騒音ラベルの影響を考慮しつつ,新たな災害・地域への一般化の課題に取り組む。
我々の研究結果は、気候変動によって引き起こされる極端気象事象の影響評価を強化するための高度なAIソリューションの可能性と限界を示している。
論文 参考訳(メタデータ) (2023-09-03T03:37:04Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Learning from Multimodal and Multitemporal Earth Observation Data for
Building Damage Mapping [17.324397643429638]
我々は、損傷マッピングを構築するためのグローバルなマルチセンサとマルチテンポラルデータセットを開発した。
グローバルデータセットには、高解像度の光学画像と高解像度のマルチバンドSARデータが含まれている。
我々は、深層畳み込みニューラルネットワークアルゴリズムに基づいて、損傷建物の意味的セグメンテーションのための損傷マッピングフレームワークを定義した。
論文 参考訳(メタデータ) (2020-09-14T05:04:19Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。