A Distributional Treatment of Real2Sim2Real for Vision-Driven Deformable Linear Object Manipulation
- URL: http://arxiv.org/abs/2502.18615v1
- Date: Tue, 25 Feb 2025 20:01:06 GMT
- Title: A Distributional Treatment of Real2Sim2Real for Vision-Driven Deformable Linear Object Manipulation
- Authors: Georgios Kamaras, Subramanian Ramamoorthy,
- Abstract summary: We present an integrated framework for manipulating deformable linear objects (DLOs) based on visual perception.<n>We compute the posterior distributions for the physical parameters using which we can approximately simulate the behaviour of each specific DLO.<n>We then study the implications of the resulting domain distributions in sim-based policy learning and real-world performance.
- Score: 16.26835655544884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an integrated (or end-to-end) framework for the Real2Sim2Real problem of manipulating deformable linear objects (DLOs) based on visual perception. Working with a parameterised set of DLOs, we use likelihood-free inference (LFI) to compute the posterior distributions for the physical parameters using which we can approximately simulate the behaviour of each specific DLO. We use these posteriors for domain randomisation while training, in simulation, object-specific visuomotor policies for a visuomotor DLO reaching task, using model-free reinforcement learning. We demonstrate the utility of this approach by deploying sim-trained DLO manipulation policies in the real world in a zero-shot manner, i.e. without any further fine-tuning. In this context, we evaluate the capacity of a prominent LFI method to perform fine classification over the parametric set of DLOs, using only visual and proprioceptive data obtained in a dynamic manipulation trajectory. We then study the implications of the resulting domain distributions in sim-based policy learning and real-world performance.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - Latent Diffusion Planning for Imitation Learning [78.56207566743154]
Latent Diffusion Planning (LDP) is a modular approach consisting of a planner and inverse dynamics model.
By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data.
On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches.
arXiv Detail & Related papers (2025-04-23T17:53:34Z) - Prompting is Not All You Need! Evaluating LLM Agent Simulation Methodologies with Real-World Online Customer Behavior Data [62.61900377170456]
We focus on evaluating LLM's objective accuracy'' rather than the subjective believability'' in simulating human behavior.<n>We present the first comprehensive evaluation of state-of-the-art LLMs on the task of web shopping action generation.
arXiv Detail & Related papers (2025-03-26T17:33:27Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.
We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - DexDLO: Learning Goal-Conditioned Dexterous Policy for Dynamic
Manipulation of Deformable Linear Objects [7.72979328949568]
We present DexDLO, a model-free framework that learns dexterous dynamic manipulation policies for deformable linear objects with a fixed-base dexterous hand.
We show that our framework can efficiently learn five different DLO manipulation tasks with the same framework parameters.
arXiv Detail & Related papers (2023-12-23T09:26:20Z) - Marginalized Importance Sampling for Off-Environment Policy Evaluation [13.824507564510503]
Reinforcement Learning (RL) methods are typically sample-inefficient, making it challenging to train and deploy RL-policies in real world robots.
This paper proposes a new approach to evaluate the real-world performance of agent policies prior to deploying them in the real world.
Our approach incorporates a simulator along with real-world offline data to evaluate the performance of any policy.
arXiv Detail & Related papers (2023-09-04T20:52:04Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Bridging the Reality Gap of Reinforcement Learning based Traffic Signal
Control using Domain Randomization and Meta Learning [0.7614628596146599]
We present a comprehensive analysis of potential simulation parameters that contribute to this reality gap.
We then examine two promising strategies that can bridge this gap: Domain Randomization (DR) and Model-Agnostic Meta-Learning (MAML)
Our experimental results show that both DR and MAML outperform a state-of-the-art RL algorithm.
arXiv Detail & Related papers (2023-07-21T05:17:21Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Policy Gradient Methods in the Presence of Symmetries and State
Abstractions [46.66541516203923]
Reinforcement learning (RL) on high-dimensional and complex problems relies on abstraction for improved efficiency and generalization.
We study abstraction in the continuous-control setting, and extend the definition of Markov decision process (MDP) homomorphisms to the setting of continuous state and action spaces.
We propose a family of actor-critic algorithms that are able to learn the policy and the MDP homomorphism map simultaneously.
arXiv Detail & Related papers (2023-05-09T17:59:10Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Koopman Q-learning: Offline Reinforcement Learning via Symmetries of
Dynamics [29.219095364935885]
offline reinforcement learning leverages large datasets to train policies without interactions with the environment.
Current algorithms over-fit to the training dataset and perform poorly when deployed to out-of-distribution generalizations of the environment.
We learn a Koopman latent representation which allows us to infer symmetries of the system's underlying dynamic.
We empirically evaluate our method on several benchmark offline reinforcement learning tasks and datasets including D4RL, Metaworld and Robosuite.
arXiv Detail & Related papers (2021-11-02T04:32:18Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
We tackle the problem of learning to control dynamical systems by applying Bayesian nonparametric methods.
By employing Gaussian processes to discover latent world dynamics, we mitigate common data efficiency issues observed in reinforcement learning.
Our algorithm jointly learns a world model and policy by optimizing a variational lower bound of a log-likelihood.
arXiv Detail & Related papers (2021-10-27T04:27:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.