WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive Storytelling
- URL: http://arxiv.org/abs/2502.18641v1
- Date: Tue, 25 Feb 2025 21:02:15 GMT
- Title: WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive Storytelling
- Authors: Zhuoran Lu, Qian Zhou, Yi Wang,
- Abstract summary: WhatELSE is an AI-bridged IN authoring system that creates narrative possibility spaces from example stories.<n>We show that WhatELSE enables authors to perceive and edit the narrative space and generates engaging interactive narratives at play-time.
- Score: 11.210282687859534
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative AI significantly enhances player agency in interactive narratives (IN) by enabling just-in-time content generation that adapts to player actions. While delegating generation to AI makes IN more interactive, it becomes challenging for authors to control the space of possible narratives - within which the final story experienced by the player emerges from their interaction with AI. In this paper, we present WhatELSE, an AI-bridged IN authoring system that creates narrative possibility spaces from example stories. WhatELSE provides three views (narrative pivot, outline, and variants) to help authors understand the narrative space and corresponding tools leveraging linguistic abstraction to control the boundaries of the narrative space. Taking innovative LLM-based narrative planning approaches, WhatELSE further unfolds the narrative space into executable game events. Through a user study (N=12) and technical evaluations, we found that WhatELSE enables authors to perceive and edit the narrative space and generates engaging interactive narratives at play-time.
Related papers
- Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions [55.2480439325792]
Role-playing games (RPG) are games in which players interact with one another to create narratives.
This emerging form of shared narrative, primarily oral, is receiving increasing attention.
In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session.
arXiv Detail & Related papers (2025-03-26T15:10:47Z) - Narrative Context Protocol: an Author-centric Storytelling Framework for Generative AI [0.0]
We propose the Narrative Context Protocol (NCP), an open standard designed to place writers at the center of future narrative design.
By encoding an author's intent according to an objective narrative model, the NCP enables narrative portability as well as intent-based constraints for generative systems.
arXiv Detail & Related papers (2025-03-05T18:29:15Z) - Towards Enhanced Immersion and Agency for LLM-based Interactive Drama [55.770617779283064]
This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency.<n>To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality.
arXiv Detail & Related papers (2025-02-25T06:06:16Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Story3D-Agent: Exploring 3D Storytelling Visualization with Large Language Models [57.30913211264333]
We present Story3D-Agent, a pioneering approach that transforms provided narratives into 3D-rendered visualizations.
By integrating procedural modeling, our approach enables precise control over multi-character actions and motions, as well as diverse decorative elements.
We have thoroughly evaluated our Story3D-Agent to validate its effectiveness, offering a basic framework to advance 3D story representation.
arXiv Detail & Related papers (2024-08-21T17:43:15Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
This paper investigates the capability of LLMs in storytelling, focusing on narrative development and plot progression.
We introduce a novel computational framework to analyze narratives through three discourse-level aspects.
We show that explicit integration of discourse features can enhance storytelling, as is demonstrated by over 40% improvement in neural storytelling.
arXiv Detail & Related papers (2024-07-18T08:02:49Z) - Social Life Simulation for Non-Cognitive Skills Learning [7.730401608473805]
We introduce Simulife++, an interactive platform enabled by a large language model (LLM)<n>The system allows users to act as protagonists, creating stories with one or multiple AI-based characters in diverse social scenarios.<n>In particular, we expanded the Human-AI interaction to a Human-AI-AI collaboration by including a Sage Agent, who acts as a bystander.
arXiv Detail & Related papers (2024-05-01T01:45:50Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
We propose SARD, a drag-and-drop visual interface for generating a multi-chapter story using large language models.
Our evaluation of the usability of SARD and its creativity support shows that while node-based visualization of the narrative may help writers build a mental model, it exerts unnecessary mental overhead to the writer.
We also found that AI generates stories that are less lexically diverse, irrespective of the complexity of the story.
arXiv Detail & Related papers (2024-03-03T17:48:42Z) - NarrativePlay: Interactive Narrative Understanding [27.440721435864194]
We introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment.
We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives.
NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
arXiv Detail & Related papers (2023-10-02T13:24:00Z) - Situated Language Learning via Interactive Narratives [16.67845396797253]
This paper explores the question of how to imbue learning agents with the ability to understand and generate contextually relevant natural language.
Two key components in creating such agents are interactivity and environment grounding.
We discuss the unique challenges a text games' puzzle-like structure combined with natural language state-and-action spaces provides.
arXiv Detail & Related papers (2021-03-18T01:55:16Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z) - Tension Space Analysis for Emergent Narrative [0.1784936803975635]
We present a novel approach to emergent narrative using the narratological theory of possible worlds.
We demonstrate how the design of works in such a system can be understood through a formal means of analysis inspired by expressive range analysis.
Finally, we propose a novel way through which content may be authored for the emergent narrative system using a sketch-based interface.
arXiv Detail & Related papers (2020-04-22T19:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.