Narrative Context Protocol: an Author-centric Storytelling Framework for Generative AI
- URL: http://arxiv.org/abs/2503.04844v4
- Date: Sat, 12 Apr 2025 18:17:10 GMT
- Title: Narrative Context Protocol: an Author-centric Storytelling Framework for Generative AI
- Authors: Hank Gerba,
- Abstract summary: We propose the Narrative Context Protocol (NCP), an open standard designed to place writers at the center of future narrative design.<n>By encoding an author's intent according to an objective narrative model, the NCP enables narrative portability as well as intent-based constraints for generative systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI promises to finally realize dynamic, personalized storytelling technologies across a range of media. To date, experimentation with generative AI in the field of procedural narrative generation has been quite promising from a technical perspective. However, fundamental narrative dilemmas remain, such as the balance between player agency and narrative coherence, and no rigorous narrative standard has been proposed to specifically leverage the strengths of generative AI. In this paper, we propose the Narrative Context Protocol (NCP), an open and extensible standard designed to place writers at the center of future narrative design workflows and enable interoperability across authoring platforms. By encoding an author's intent according to an objective narrative model, the NCP enables narrative portability as well as intent-based constraints for generative systems.
Related papers
- MM-StoryAgent: Immersive Narrated Storybook Video Generation with a Multi-Agent Paradigm across Text, Image and Audio [48.820808691986805]
MM-StoryAgent creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio.<n>The framework enhances story attractiveness through a multi-stage writing pipeline.<n> MM-StoryAgent offers a flexible, open-source platform for further development.
arXiv Detail & Related papers (2025-03-07T08:53:10Z) - WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive Storytelling [11.210282687859534]
WhatELSE is an AI-bridged IN authoring system that creates narrative possibility spaces from example stories.<n>We show that WhatELSE enables authors to perceive and edit the narrative space and generates engaging interactive narratives at play-time.
arXiv Detail & Related papers (2025-02-25T21:02:15Z) - StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
We propose a multi-agent framework designed for Customized Storytelling Video Generation (CSVG)
StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process.
Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency.
Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
arXiv Detail & Related papers (2024-11-07T18:00:33Z) - Crafting Narrative Closures: Zero-Shot Learning with SSM Mamba for Short Story Ending Generation [0.0]
Authors encounter moments of creative block, where the path forward in their narrative becomes obscured.
This paper is designed to address such moments by providing an innovative solution: A tool that completes stories based on given prompts.
By inputting a short story prompt, users can receive a conclusion to their story, articulated in one sentence or more, thereby enhancing the storytelling process with AI-driven creativity.
arXiv Detail & Related papers (2024-10-04T18:56:32Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
We propose SARD, a drag-and-drop visual interface for generating a multi-chapter story using large language models.
Our evaluation of the usability of SARD and its creativity support shows that while node-based visualization of the narrative may help writers build a mental model, it exerts unnecessary mental overhead to the writer.
We also found that AI generates stories that are less lexically diverse, irrespective of the complexity of the story.
arXiv Detail & Related papers (2024-03-03T17:48:42Z) - Generating Coherent Narratives by Learning Dynamic and Discrete Entity
States with a Contrastive Framework [68.1678127433077]
We extend the Transformer model to dynamically conduct entity state updates and sentence realization for narrative generation.
Experiments on two narrative datasets show that our model can generate more coherent and diverse narratives than strong baselines.
arXiv Detail & Related papers (2022-08-08T09:02:19Z) - Guiding Neural Story Generation with Reader Models [5.935317028008691]
We introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress.
Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic.
arXiv Detail & Related papers (2021-12-16T03:44:01Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
We introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process.
We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings.
arXiv Detail & Related papers (2021-05-04T06:40:33Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z) - Narrative Interpolation for Generating and Understanding Stories [52.463747140762145]
We propose a method for controlled narrative/story generation where we are able to guide the model to produce coherent narratives with user-specified target endings.
The core of our method is an incrementally model based on GPT-2 which conditions on a previous sentence and a next sentence in a narrative and fills in the gap.
We show that ending-guided generation results in narratives which are coherent, faithful to the given ending guide, and require less manual effort on the part of the human guide writer than past approaches.
arXiv Detail & Related papers (2020-08-17T16:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.