How Execution Features Relate to Failures: An Empirical Study and Diagnosis Approach
- URL: http://arxiv.org/abs/2502.18664v1
- Date: Tue, 25 Feb 2025 22:00:05 GMT
- Title: How Execution Features Relate to Failures: An Empirical Study and Diagnosis Approach
- Authors: Marius Smytzek, Martin Eberlein, Lars Grunske, Andreas Zeller,
- Abstract summary: Fault localization aims to identify code regions likely responsible for failures.<n>Traditional techniques primarily correlate statement execution with failures.<n>We analyzed 17 execution features and assessed their correlation with failure outcomes.
- Score: 11.857060911501016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault localization is a fundamental aspect of debugging, aiming to identify code regions likely responsible for failures. Traditional techniques primarily correlate statement execution with failures, yet program behavior is influenced by diverse execution features-such as variable values, branch conditions, and definition-use pairs-that can provide richer diagnostic insights. In an empirical study of 310 bugs across 20 projects, we analyzed 17 execution features and assessed their correlation with failure outcomes. Our findings suggest that fault localization benefits from a broader range of execution features: (1) Scalar pairs exhibit the strongest correlation with failures; (2) Beyond line executions, def-use pairs and functions executed are key indicators for fault localization; and (3) Combining multiple features enhances effectiveness compared to relying solely on individual features. Building on these insights, we introduce a debugging approach to diagnose failure circumstances. The approach extracts fine-grained execution features and trains a decision tree to differentiate passing and failing runs. From this model, we derive a diagnosis that pinpoints faulty locations and explains the underlying causes of the failure. Our evaluation demonstrates that the generated diagnoses achieve high predictive accuracy, reinforcing their reliability. These interpretable diagnoses empower developers to efficiently debug software by providing deeper insights into failure causes.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - FaultExplainer: Leveraging Large Language Models for Interpretable Fault Detection and Diagnosis [7.161558367924948]
This paper presents FaultExplainer, an interactive tool designed to improve fault detection, diagnosis, and explanation in the Tennessee Eastman Process (TEP)<n>FaultExplainer integrates real-time sensor data visualization, Principal Component Analysis (PCA)-based fault detection, and identification of top contributing variables within an interactive user interface powered by large language models (LLMs)<n>We evaluate the LLMs' reasoning capabilities in two scenarios: one where historical root causes are provided, and one where they are not to mimic the challenge of previously unseen faults.
arXiv Detail & Related papers (2024-12-19T03:35:06Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests [44.13331329339185]
We introduce a new approach, SBEST, that integrates stack trace data with test coverage to enhance fault localization.
Our approach shows a significant improvement, increasing Mean Average Precision (MAP) by 32.22% and Mean Reciprocal Rank (MRR) by 17.43% over traditional stack trace ranking methods.
arXiv Detail & Related papers (2024-05-01T15:15:52Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.<n>However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - SURE: A Visualized Failure Indexing Approach using Program Memory
Spectrum [2.4151044161696587]
We propose SURE, a viSUalized failuRe indExing approach using the program memory spectrum.
We first collect the run-time memory information at preset breakpoints during the execution of failed test cases.
Any pair of PMS images that serve as proxies for two failures is fed to a trained Siamese convolutional neural network.
arXiv Detail & Related papers (2023-10-19T02:04:35Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Indicators of Attack Failure: Debugging and Improving Optimization of
Adversarial Examples [29.385242714424624]
evaluating robustness of machine-learning models to adversarial examples is a challenging problem.
We define a set of quantitative indicators which unveil common failures in the optimization of gradient-based attacks.
Our experimental analysis shows that the proposed indicators of failure can be used to visualize, debug and improve current adversarial robustness evaluations.
arXiv Detail & Related papers (2021-06-18T06:57:58Z) - Feature Engineering for Scalable Application-Level Post-Silicon
Debugging [0.456877715768796]
We present solutions for both observability enhancement and root-cause diagnosis of post-silicon System-on-Chips (SoCs) validation.
We model specification of interacting flows in typical applications for message selection.
We define diagnosis problem as identifying buggy traces as outliers and bug-free traces as inliers/normal behaviors.
arXiv Detail & Related papers (2021-02-08T22:11:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.