Exploring Graph Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation
- URL: http://arxiv.org/abs/2502.18771v1
- Date: Wed, 26 Feb 2025 03:03:46 GMT
- Title: Exploring Graph Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation
- Authors: Yuxiang Wang, Xinnan Dai, Wenqi Fan, Yao Ma,
- Abstract summary: Graph-structured data has become increasingly prevalent across various domains, raising the demand for effective models to handle graph tasks.<n>Traditional graph learning models like Graph Neural Networks (GNNs) have made significant strides, but their capabilities in handling graph data remain limited in certain contexts.<n>In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks, yet most studies focus primarily on performance benchmarks.
- Score: 26.19182768810174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-structured data has become increasingly prevalent across various domains, raising the demand for effective models to handle graph tasks like node classification and link prediction. Traditional graph learning models like Graph Neural Networks (GNNs) have made significant strides, but their capabilities in handling graph data remain limited in certain contexts. In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks, yet most studies focus primarily on performance benchmarks and fail to address their broader potential, including their ability to handle limited data, their transferability across tasks, and their robustness. In this work, we provide a comprehensive exploration of LLMs applied to graph tasks. We evaluate the performance of pure LLMs, including those without parameter optimization and those fine-tuned with instructions, across various scenarios. Our analysis goes beyond accuracy, assessing LLM ability to perform in few-shot/zero-shot settings, transfer across domains, understand graph structures, and demonstrate robustness in challenging scenarios. We conduct extensive experiments with 16 graph learning models alongside 6 LLMs (e.g., Llama3B, GPT-4o, Qwen-plus), comparing their performance on datasets like Cora, PubMed, ArXiv, and Products. Our findings show that LLMs, particularly those with instruction tuning, outperform traditional models in few-shot settings, exhibit strong domain transferability, and demonstrate excellent generalization and robustness. This work offers valuable insights into the capabilities of LLMs for graph learning, highlighting their advantages and potential for real-world applications, and paving the way for future research in this area. Codes and datasets are released in https://github.com/myflashbarry/LLM-benchmarking.
Related papers
- GraphICL: Unlocking Graph Learning Potential in LLMs through Structured Prompt Design [13.365623514253926]
Graph In-context Learning (GraphICL) Benchmark is a comprehensive benchmark comprising novel prompt templates to capture graph structure and handle limited label knowledge.
Our systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform state-of-the-art specialized graph LLMs and graph neural network models.
arXiv Detail & Related papers (2025-01-27T03:50:30Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [88.4320775961431]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.<n>Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.<n>We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
Large Language and Graph Assistant (LLaGA) is an innovative model to handle the complexities of graph-structured data.
LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks.
Our experiments show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model.
arXiv Detail & Related papers (2024-02-13T02:03:26Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.