論文の概要: JailBench: A Comprehensive Chinese Security Assessment Benchmark for Large Language Models
- arxiv url: http://arxiv.org/abs/2502.18935v1
- Date: Wed, 26 Feb 2025 08:36:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:21.851788
- Title: JailBench: A Comprehensive Chinese Security Assessment Benchmark for Large Language Models
- Title(参考訳): JailBench: 大規模言語モデルの総合的なセキュリティ評価ベンチマーク
- Authors: Shuyi Liu, Simiao Cui, Haoran Bu, Yuming Shang, Xi Zhang,
- Abstract要約: JailBenchは,大規模言語モデル(LLM)の深層脆弱性を評価するための,最初の包括的な中国のベンチマークである。
我々は JailBench 構築に新しい Jailbreak Prompt Engineer (AJPE) フレームワークを採用している。
提案した JailBench は 13 個の LLM に対して広範囲に評価され,ChatGPT に対する攻撃成功率が最も高い。
- 参考スコア(独自算出の注目度): 7.020171518136542
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities across various applications, highlighting the urgent need for comprehensive safety evaluations. In particular, the enhanced Chinese language proficiency of LLMs, combined with the unique characteristics and complexity of Chinese expressions, has driven the emergence of Chinese-specific benchmarks for safety assessment. However, these benchmarks generally fall short in effectively exposing LLM safety vulnerabilities. To address the gap, we introduce JailBench, the first comprehensive Chinese benchmark for evaluating deep-seated vulnerabilities in LLMs, featuring a refined hierarchical safety taxonomy tailored to the Chinese context. To improve generation efficiency, we employ a novel Automatic Jailbreak Prompt Engineer (AJPE) framework for JailBench construction, which incorporates jailbreak techniques to enhance assessing effectiveness and leverages LLMs to automatically scale up the dataset through context-learning. The proposed JailBench is extensively evaluated over 13 mainstream LLMs and achieves the highest attack success rate against ChatGPT compared to existing Chinese benchmarks, underscoring its efficacy in identifying latent vulnerabilities in LLMs, as well as illustrating the substantial room for improvement in the security and trustworthiness of LLMs within the Chinese context. Our benchmark is publicly available at https://github.com/STAIR-BUPT/JailBench.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なアプリケーションにまたがる顕著な機能を示し、包括的な安全性評価の必要性を強調している。
特に、LLMの中国語習熟度の向上と、中国語表現の特徴と複雑さが組み合わさって、安全性評価のための中国語固有のベンチマークの出現を促している。
しかし、これらのベンチマークは一般的にLLMの安全性の脆弱性を効果的に露呈するのに不足している。
このギャップに対処するため、我々は、中国の文脈に合わせた洗練された階層的な安全分類を特徴とする、LSMの深層脆弱性を評価するための最初の包括的な中国のベンチマークであるJailBenchを紹介した。
生成効率を向上させるために, JailBench 構築のための新しい Jailbreak Prompt Engineer (AJPE) フレームワークを採用している。
提案した JailBench は13の主要な LLM に対して広く評価されており、既存の中国のベンチマークと比較してChatGPT に対する攻撃成功率が最も高い。
私たちのベンチマークはhttps://github.com/STAIR-BUPT/JailBench.comで公開されています。
関連論文リスト
- SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
本研究では,大規模言語モデル(LLM)の安全性を様々なタスクやプロンプトタイプにまたがる一般化を評価するための新しいベンチマークを開発する。
このベンチマークは、生成的および識別的評価タスクを統合し、LLMの安全性に対する迅速なエンジニアリングとジェイルブレイクの影響を調べるための拡張データを含む。
評価の結果,ほとんどのLDMは生成的タスクよりも差別的タスクが悪く,プロンプトに非常に敏感であり,安全アライメントの一般化が不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-29T11:47:01Z) - CHiSafetyBench: A Chinese Hierarchical Safety Benchmark for Large Language Models [7.054112690519648]
CHiSafetyBenchは、リスクのあるコンテンツを特定し、中国のコンテキストにおけるリスクのある質問への回答を拒否する大きな言語モデルの能力を評価するための安全ベンチマークである。
このデータセットは、複数の選択質問と質問回答、リスクコンテンツ識別の観点からのLSMの評価、リスクのある質問への回答を拒否する能力の2つのタスクからなる。
本実験により, 各種安全領域における各種モデルの各種性能が明らかとなり, 中国における安全能力向上の可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-14T06:47:40Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety [37.07970624135514]
OpenEvalは、能力、アライメント、安全性にわたって中国のLLMをベンチマークする評価テストベッドである。
機能評価には,NLPタスク,ディシプリナリーナレッジ,コモンセンス推論,数学的推論という4つのサブディメンジョンから中国語LLMを評価するための12のベンチマークデータセットを含む。
アライメントアライメントアセスメントのために、OpenEvalには、中国のLLMが出力するバイアス、攻撃性、不正性を調べる7つのデータセットが含まれている。
論文 参考訳(メタデータ) (2024-03-18T23:21:37Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - AlignBench: Benchmarking Chinese Alignment of Large Language Models [99.24597941555277]
中国語大言語モデルのアライメントを評価するための総合ベンチマークであるAlignBenchを紹介する。
我々は,8つの主要なカテゴリ,683の実シナリオ根付きクエリ,およびそれに対応する人間の検証基準を含む,ループ内データキュレーションパイプラインを設計する。
自動評価には,Chain-of-Thoughtを用いた多次元LCM-as-Judgecitezheng2023アジュジング手法を用いて説明と最終評価を生成する。
論文 参考訳(メタデータ) (2023-11-30T17:41:30Z) - Flames: Benchmarking Value Alignment of LLMs in Chinese [86.73527292670308]
本稿では,Flamesという値アライメントベンチマークを提案する。
一般的な無害の原則と、特定の中国の価値観を統合するユニークな道徳的側面の両方を包含している。
以上の結果から, 評価されたLLMはフラムに対して比較的低い性能を示した。
論文 参考訳(メタデータ) (2023-11-12T17:18:21Z) - SafetyBench: Evaluating the Safety of Large Language Models [54.878612385780805]
SafetyBenchは、大規模言語モデル(LLM)の安全性を評価するための包括的なベンチマークである。
11,435 の多様な選択質問が 7 つの異なるカテゴリーの安全問題にまたがっている。
ゼロショット設定と少数ショット設定の両方で、中国語と英語のLLMを25回以上テストしたところ、GPT-4よりも大幅にパフォーマンス上の優位性を示しました。
論文 参考訳(メタデータ) (2023-09-13T15:56:50Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。