論文の概要: PEToolLLM: Towards Personalized Tool Learning in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.18980v1
- Date: Wed, 26 Feb 2025 09:43:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:20.726194
- Title: PEToolLLM: Towards Personalized Tool Learning in Large Language Models
- Title(参考訳): PEToolLLM:大規模言語モデルにおける個人化ツール学習を目指して
- Authors: Qiancheng Xu, Yongqi Li, Heming Xia, Fan Liu, Min Yang, Wenjie Li,
- Abstract要約: 我々は、パーソナライズされたツール利用に向けて、ユーザのインタラクション履歴を統合する、パーソナライズされたツール学習のタスクを定式化する。
PEToolBenchを構築し,3つの個別設定の下でインタラクション履歴に反映される多様なユーザの好みを特徴付ける。
LLMをパーソナライズしたツール学習タスクに適用するためのフレームワークPEToolLLaMAを提案する。
- 参考スコア(独自算出の注目度): 21.800332388883465
- License:
- Abstract: Tool learning has emerged as a promising direction by extending Large Language Models' (LLMs) capabilities with external tools. Existing tool learning studies primarily focus on the general-purpose tool-use capability, which addresses explicit user requirements in instructions. However, they overlook the importance of personalized tool-use capability, leading to an inability to handle implicit user preferences. To address the limitation, we first formulate the task of personalized tool learning, which integrates user's interaction history towards personalized tool usage. To fill the gap of missing benchmarks, we construct PEToolBench, featuring diverse user preferences reflected in interaction history under three distinct personalized settings, and encompassing a wide range of tool-use scenarios. Moreover, we propose a framework PEToolLLaMA to adapt LLMs to the personalized tool learning task, which is trained through supervised fine-tuning and direct preference optimization. Extensive experiments on PEToolBench demonstrate the superiority of PEToolLLaMA over existing LLMs.
- Abstract(参考訳): ツール学習は、大きな言語モデル(LLM)機能を外部ツールで拡張することで、有望な方向として現れました。
既存のツール学習研究は主に、命令の明示的なユーザ要求に対処する汎用ツールの利用能力に焦点を当てている。
しかし、パーソナライズされたツール使用機能の重要性を見落とし、暗黙のユーザの好みを扱うことができない。
この制限に対処するために、まずパーソナライズされたツール学習のタスクを定式化し、パーソナライズされたツール利用に向けてユーザのインタラクション履歴を統合する。
欠落したベンチマークのギャップを埋めるために,PEToolBenchを構築し,対話履歴に反映される多様なユーザの好みを3つの個別設定の下で表現し,幅広いツール利用シナリオを包含する。
さらに,パーソナライズされたツール学習タスクにLLMを適用するためのフレームワークPEToolLLaMAを提案する。
PEToolBenchに関する大規模な実験は、既存のLLMよりもPEToolLLaMAの方が優れていることを示した。
関連論文リスト
- PTR: Precision-Driven Tool Recommendation for Large Language Models [43.53494041932615]
大規模言語モデル(LLM)のためのPTR(Precision-driven Tool Recommendation)アプローチを提案する。
PTRは、過去のツールバンドルの利用を利用して、初期的かつ簡潔なツールセットをキャプチャし、ツールマッチングを実行することで、ツールセットを動的に調整する。
LLMのツールレコメンデーションの有効性を評価するために,新しいデータセットRecToolsとメトリクスTRACCを提案する。
論文 参考訳(メタデータ) (2024-11-14T17:33:36Z) - Learning to Ask: When LLM Agents Meet Unclear Instruction [55.65312637965779]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
大規模言語モデル(LLM)は、コンテキスト内学習や微調整を通じて、ある程度のツールを効果的に扱うことができる。
現実のシナリオでは、ツールの数は一般的に広範囲で不規則に更新され、専用のツール検索コンポーネントの必要性を強調している。
本稿では,大規模言語モデルからの反復的なフィードバックでツール検索を強化することを提案する。
論文 参考訳(メタデータ) (2024-06-25T11:12:01Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning [57.523454568002144]
大きな言語モデル(LLM)は、常識的な推論と外部ツールの活用の能力を示している。
ツール学習を通じてLLMを活用したレコメンデーションのためのフレームワークであるToolRecを紹介する。
属性の粒度を探索するプロセスとして推薦プロセスを定式化する。
属性指向ツールには,ランクツールと検索ツールの2種類がある。
論文 参考訳(メタデータ) (2024-05-24T00:06:54Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use [79.87054552116443]
大規模言語モデル(LLM)は、その印象的な自然言語処理(NLP)能力のために大きな注目を集めている。
このベンチマークは、LLMがツールの使用意識を持ち、ツールを正しく選択できるかどうかを評価するためのものだ。
8つの人気のあるLCMを巻き込んだ実験を行い、その大半は依然として効果的にツールを選択するのに苦労していることがわかった。
論文 参考訳(メタデータ) (2023-10-04T19:39:26Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
ツールは、人間が環境を理解し、形を変えることができる重要なインターフェースとして機能する。
既存のツール学習手法は、ツールを無差別に活用するために大きな言語モデルを誘導する。
ツール実行からのフィードバックを通じてモデルを継続的に学習することを可能にする2段階のエンドツーエンドフレームワークであるTool leaRning wIth exeCution fEedback (TRICE)を提案する。
論文 参考訳(メタデータ) (2023-05-22T14:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。