論文の概要: TestNUC: Enhancing Test-Time Computing Approaches through Neighboring Unlabeled Data Consistency
- arxiv url: http://arxiv.org/abs/2502.19163v1
- Date: Wed, 26 Feb 2025 14:17:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 15:00:00.497826
- Title: TestNUC: Enhancing Test-Time Computing Approaches through Neighboring Unlabeled Data Consistency
- Title(参考訳): TestNUC: 隣のラベルのないデータ一貫性によるテスト時間コンピューティングアプローチの強化
- Authors: Henry Peng Zou, Zhengyao Gu, Yue Zhou, Yankai Chen, Weizhi Zhang, Liancheng Fang, Yibo Wang, Yangning Li, Kay Liu, Philip S. Yu,
- Abstract要約: TestNUCは、隣接する未ラベルデータの局所的な一貫性を活用することで、テスト時の予測を改善する。
TestNUCは既存のテストタイムコンピューティングアプローチとシームレスに統合できる。
- 参考スコア(独自算出の注目度): 42.81348222668079
- License:
- Abstract: Test-time computing approaches, which leverage additional computational resources during inference, have been proven effective in enhancing large language model performance. This work introduces a novel, linearly scaling approach, TestNUC, that improves test-time predictions by leveraging the local consistency of neighboring unlabeled data-it classifies an input instance by considering not only the model's prediction on that instance but also on neighboring unlabeled instances. We evaluate TestNUC across eight diverse datasets, spanning intent classification, topic mining, domain discovery, and emotion detection, demonstrating its consistent superiority over baseline methods such as standard prompting and self-consistency. Furthermore, TestNUC can be seamlessly integrated with existing test-time computing approaches, substantially boosting their performance. Our analysis reveals that TestNUC scales effectively with increasing amounts of unlabeled data and performs robustly across different embedding models, making it practical for real-world applications. Our code is available at https://github.com/HenryPengZou/TestNUC.
- Abstract(参考訳): 推論中に追加の計算資源を利用するテストタイムコンピューティングアプローチは、大規模言語モデルの性能向上に有効であることが証明されている。
この研究は、近隣の未ラベルデータの局所的な一貫性を活用してテスト時間予測を改善する、新しい線形スケーリングアプローチであるTestNUCを導入し、そのインスタンス上のモデルの予測だけでなく、近隣の未ラベルのインスタンス上でもモデルを考慮して入力インスタンスを分類する。
目的分類,トピックマイニング,ドメイン発見,感情検出など8種類のデータセットを対象にTestNUCを評価し,標準プロンプトや自己整合性といったベースライン手法よりも一貫した優位性を示す。
さらに、TestNUCは既存のテストタイムコンピューティングアプローチとシームレスに統合することができ、パフォーマンスを大幅に向上させることができる。
分析の結果,TestNUCはラベルなしデータの増加とともに効果的にスケールし,様々な埋め込みモデルに対して堅牢に動作し,現実のアプリケーションに実用的であることがわかった。
私たちのコードはhttps://github.com/HenryPengZou/TestNUCで利用可能です。
関連論文リスト
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
トレーニングプロセス中にサンプル選択に使用される信頼度を自己校正するALフレームワークを提案する。
ラベル付きサンプルが少ないソフトマックス分類器と比較して,分類性能が向上した。
論文 参考訳(メタデータ) (2024-07-02T15:05:19Z) - Test Case Recommendations with Distributed Representation of Code
Syntactic Features [2.225268436173329]
本稿では,ソースコード手法とテストケースの構造的・意味的特性を利用する自動手法を提案する。
提案するアプローチは、当初、メソッドレベルのソースコードとユニットテストを分散表現に変換するためにニューラルネットワークをトレーニングする。
このモデルは、メソッドの埋め込みと以前に組み込まれたトレーニングインスタンスのコサイン類似性を計算します。
論文 参考訳(メタデータ) (2023-10-04T21:42:01Z) - pSTarC: Pseudo Source Guided Target Clustering for Fully Test-Time
Adaptation [15.621092104244003]
テスト時間適応(TTA)は機械学習において重要な概念であり、モデルが現実世界のシナリオでうまく機能することを可能にする。
そこで本研究では,TTAの比較的未探索領域を実世界のドメインシフト下で解決する手法として,擬似ソースガイドターゲットクラスタリング(pSTarC)を提案する。
論文 参考訳(メタデータ) (2023-09-02T07:13:47Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
オンラインコンテンツレコメンデーションや株式市場分析のようなディープラーニングアプリケーションでは、モデルは過去のデータを使って予測を行う。
入力ストリーム上の固定サイズのスライディングウインドウを使用するモデルに対して、ロバスト性証明を導出する。
私たちの保証は、ストリーム全体の平均モデルパフォーマンスを保ち、ストリームサイズに依存しないので、大きなデータストリームに適しています。
論文 参考訳(メタデータ) (2023-03-28T21:02:35Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST)は、あるソースデータとテスト時の新しいデータ分散に基づいてトレーニングされたモデルを入力する技術である。
また,TeSTを用いたモデルでは,ベースラインテスト時間適応アルゴリズムよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2022-09-23T07:47:33Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。