EGR-Net: A Novel Embedding Gramian Representation CNN for Intelligent Fault Diagnosis
- URL: http://arxiv.org/abs/2502.19199v1
- Date: Wed, 26 Feb 2025 15:05:56 GMT
- Title: EGR-Net: A Novel Embedding Gramian Representation CNN for Intelligent Fault Diagnosis
- Authors: Linshan Jia,
- Abstract summary: Feature extraction is crucial in intelligent fault diagnosis of rotating machinery.<n>It is easier for convolutional neural networks(CNNs) to visually recognize and learn fault features by converting the complicated one-dimensional (1D) vibrational signals into two-dimensional (2D) images with simple textures.<n>This paper proposes a new 1D-to-2D conversion method called Embedding Gramian Representation (EGR) which is easy to calculate and shows good separability.
- Score: 0.7252027234425334
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Feature extraction is crucial in intelligent fault diagnosis of rotating machinery. It is easier for convolutional neural networks(CNNs) to visually recognize and learn fault features by converting the complicated one-dimensional (1D) vibrational signals into two-dimensional (2D) images with simple textures. However, the existing representation methods for encoding 1D signals as images have two main problems, including complicated computation and low separability. Meanwhile, the existing 2D-CNN fault diagnosis methods taking 2D images as the only inputs still suffer from the inevitable information loss because of the conversion process. Considering the above issues, this paper proposes a new 1D-to-2D conversion method called Embedding Gramian Representation (EGR), which is easy to calculate and shows good separability. In EGR, 1D signals are projected in the embedding space and the intrinsic periodicity of vibrational signals is captured enabling the faulty characteristics contained in raw signals to be uncovered. Second, aiming at the information loss problem of existing CNN models with the single input of converted images, a double-branch EGR-based CNN, called EGR-Net, is proposed to learn faulty features from both raw signal feature maps and their corresponding EGRs. The bridge connection is designed to improve the feature learning interaction between the two branches. Widely used open domain gearbox dataset and bearing dataset are used to verify the effectiveness and efficiency of the proposed methods. EGR-Net is compared with traditional and state-of-the-art approaches, and the results show that the proposed method can deliver enhanced performance.
Related papers
- Exploring Kernel Transformations for Implicit Neural Representations [57.2225355625268]
Implicit neural representations (INRs) leverage neural networks to represent signals by mapping coordinates to their corresponding attributes.
This work pioneers the exploration of the effect of kernel transformation of input/output while keeping the model itself unchanged.
A byproduct of our findings is a simple yet effective method that combines scale and shift to significantly boost INR with negligible overhead.
arXiv Detail & Related papers (2025-04-07T04:43:50Z) - Integrating Graph Neural Networks with Scattering Transform for Anomaly Detection [0.0]
We present two novel methods in Network Intrusion Detection Systems (NIDS) using Graph Neural Networks (GNNs)
The first approach, Scattering Transform with E-GraphSAGE (STEG), utilizes the scattering transform to conduct multi-resolution analysis of edge feature vectors.
The second approach improves node representation by initiating with Node2Vec, diverging from standard methods of using uniform values.
arXiv Detail & Related papers (2024-04-16T00:02:12Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - AliasNet: Alias Artefact Suppression Network for Accelerated
Phase-Encode MRI [4.752084030395196]
Sparse reconstruction is an important aspect of MRI, helping to reduce acquisition time and improve spatial-temporal resolution.
Experiments conducted on retrospectively under-sampled brain and knee data demonstrate that combination of the proposed 1D AliasNet modules with existing 2D deep learned (DL) recovery techniques leads to an improvement in image quality.
arXiv Detail & Related papers (2023-02-17T13:16:17Z) - Graph Neural Network-based Early Bearing Fault Detection [0.18275108630751835]
A novel graph neural network-based fault detection method is proposed.
It builds a bridge between AI and real-world running mechanical systems.
We find that the proposed method can successfully detect faulty objects that are mixed in the normal object region.
arXiv Detail & Related papers (2022-04-24T08:54:55Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - A Dual Neighborhood Hypergraph Neural Network for Change Detection in
VHR Remote Sensing Images [12.222830717774118]
A dual neighborhood hypergraph neural network is proposed in this article.
The proposed method comprises better effectiveness and robustness compared to many state-of-the-art methods.
arXiv Detail & Related papers (2022-02-27T02:39:08Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Y-GAN: Learning Dual Data Representations for Efficient Anomaly
Detection [0.0]
We propose a novel reconstruction-based model for anomaly detection, called Y-GAN.
The model consists of a Y-shaped auto-encoder and represents images in two separate latent spaces.
arXiv Detail & Related papers (2021-09-28T20:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.