Graph Neural Network-based Early Bearing Fault Detection
- URL: http://arxiv.org/abs/2204.11220v1
- Date: Sun, 24 Apr 2022 08:54:55 GMT
- Title: Graph Neural Network-based Early Bearing Fault Detection
- Authors: Xusheng Du, Jiong Yu
- Abstract summary: A novel graph neural network-based fault detection method is proposed.
It builds a bridge between AI and real-world running mechanical systems.
We find that the proposed method can successfully detect faulty objects that are mixed in the normal object region.
- Score: 0.18275108630751835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of faults is of importance to avoid catastrophic accidents
and ensure safe operation of machinery. A novel graph neural network-based
fault detection method is proposed to build a bridge between AI and real-world
running mechanical systems. First, the vibration signals, which are Euclidean
structured data, are converted into graph (non-Euclidean structured data), so
that the vibration signals, which are originally independent of each other, are
correlated with each other. Second, inputs the dataset together with its
corresponding graph into the GNN for training, which contains graphs in each
hidden layer of the network, enabling the graph neural network to learn the
feature values of itself and its neighbors, and the obtained early features
have stronger discriminability. Finally, determines the top-n objects that are
difficult to reconstruct in the output layer of the GNN as fault objects. A
public datasets of bearings have been used to verify the effectiveness of the
proposed method. We find that the proposed method can successfully detect
faulty objects that are mixed in the normal object region.
Related papers
- Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - BS-GAT Behavior Similarity Based Graph Attention Network for Network
Intrusion Detection [20.287285893803244]
This paper proposes a graph neural network algorithm based on behavior similarity (BS-GAT) using graph attention network.
The results show that the proposed method is effective and has superior performance comparing to existing solutions.
arXiv Detail & Related papers (2023-04-07T09:42:07Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
This paper introduces the Network Transformer (NeT) model for anomaly detection.
NeT incorporates the graph structure of the communication network in order to improve interpretability.
The presented approach was tested by evaluating the successful detection of anomalies in an Industrial Control System.
arXiv Detail & Related papers (2022-02-25T22:05:59Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - One-Class Graph Neural Networks for Anomaly Detection in Attributed
Networks [2.591494941326856]
One Class Graph Neural Network (OCGNN) is a one-class classification framework for graph anomaly detection.
OCGNN is designed to combine the powerful representation ability of Graph Neural Networks along with the classical one-class objective.
arXiv Detail & Related papers (2020-02-22T01:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.