論文の概要: A Lightweight and Extensible Cell Segmentation and Classification Model for Whole Slide Images
- arxiv url: http://arxiv.org/abs/2502.19217v1
- Date: Wed, 26 Feb 2025 15:19:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:04.080863
- Title: A Lightweight and Extensible Cell Segmentation and Classification Model for Whole Slide Images
- Title(参考訳): 全スライド画像の軽量で拡張可能なセル分割と分類モデル
- Authors: Nikita Shvetsov, Thomas K. Kilvaer, Masoud Tafavvoghi, Anders Sildnes, Kajsa Møllersen, Lill-Tove Rasmussen Busund, Lars Ailo Bongo,
- Abstract要約: 本稿では,軽量なセルセグメンテーションと分類モデルを作成することにより,データ品質,モデル性能,ユーザビリティを向上させるソリューションを提案する。
そこで,PanNukeとMoNuSACのアノテーションを改良し,異なる7つのセルタイプで統一されたデータセットを生成する。
第3に、基礎モデルの計算要求に対処するため、比較性能を維持しながら、モデルのサイズと複雑さを減らすために知識を蒸留する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Developing clinically useful cell-level analysis tools in digital pathology remains challenging due to limitations in dataset granularity, inconsistent annotations, high computational demands, and difficulties integrating new technologies into workflows. To address these issues, we propose a solution that enhances data quality, model performance, and usability by creating a lightweight, extensible cell segmentation and classification model. First, we update data labels through cross-relabeling to refine annotations of PanNuke and MoNuSAC, producing a unified dataset with seven distinct cell types. Second, we leverage the H-Optimus foundation model as a fixed encoder to improve feature representation for simultaneous segmentation and classification tasks. Third, to address foundation models' computational demands, we distill knowledge to reduce model size and complexity while maintaining comparable performance. Finally, we integrate the distilled model into QuPath, a widely used open-source digital pathology platform. Results demonstrate improved segmentation and classification performance using the H-Optimus-based model compared to a CNN-based model. Specifically, average $R^2$ improved from 0.575 to 0.871, and average $PQ$ score improved from 0.450 to 0.492, indicating better alignment with actual cell counts and enhanced segmentation quality. The distilled model maintains comparable performance while reducing parameter count by a factor of 48. By reducing computational complexity and integrating into workflows, this approach may significantly impact diagnostics, reduce pathologist workload, and improve outcomes. Although the method shows promise, extensive validation is necessary prior to clinical deployment.
- Abstract(参考訳): デジタル病理学における臨床的に有用な細胞レベル解析ツールの開発は、データセットの粒度の制限、一貫性のないアノテーション、高い計算要求、新しい技術をワークフローに統合することの難しさにより、依然として困難である。
これらの課題に対処するため,我々は,軽量で拡張可能なセルセグメンテーションと分類モデルを作成することにより,データ品質,モデル性能,ユーザビリティを向上させるソリューションを提案する。
まず、PanNukeとMoNuSACのアノテーションを改良し、7つの異なるセルタイプで統一されたデータセットを生成するクロスラベルにより、データラベルを更新する。
第2に,H-Optimusファンデーションモデルを固定エンコーダとして利用し,同時セグメンテーションと分類タスクのための特徴表現を改善する。
第3に、基礎モデルの計算要求に対処するため、比較性能を維持しながら、モデルのサイズと複雑さを減らすために知識を蒸留する。
最後に、蒸留したモデルをオープンソースデジタル病理プラットフォームQuPathに統合する。
CNNモデルと比較して,H-Optimusモデルを用いたセグメンテーションと分類性能が改善された。
具体的には、平均$R^2$は0.575から0.871に改善され、平均$PQ$スコアは0.450から0.492に改善された。
蒸留モデルでは,パラメータカウントを48。
計算の複雑さを減らし、ワークフローに統合することにより、このアプローチは診断に大きな影響を与え、病理医の作業負荷を減らし、結果を改善することができる。
本手法は将来性を示すが,臨床展開に先立って広範な検証が必要である。
関連論文リスト
- Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
MRI画像を用いた脳腫瘍の分類は、早期かつ正確な検出が患者の予後に大きな影響を及ぼす医療診断において重要である。
近年のディープラーニング(DL)の進歩は将来性を示しているが、多くのモデルは精度と計算効率のバランスに苦慮している。
本稿では,分離可能な畳み込みと圧縮・励振ブロック(SEブロック)を統合した新しいモデルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-01T21:06:42Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
バイオメディカルイメージングにおいて広く使われているU-Netスタイルのアーキテクチャを解析する手法を開発した。
我々は,プルーニングが性能を低下させることなく,少なくとも70%圧縮できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-04-12T22:05:01Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
十分に注釈付けされた医療データセットの不足は、ImageNetのような広範なデータセットやCLIPのような事前訓練されたモデルからの移行学習を活用する必要がある。
モデルスープは、In-Domain(ID)タスクのパフォーマンスを改善し、out-of-Distribution(OOD)データセットに対する堅牢性を高めることを目的とした、複数の微調整されたモデルの平均である。
本稿では,様々なレベルのモデルの局所的および大域的集約を伴う階層的統合手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T06:48:48Z) - Re-DiffiNet: Modeling discrepancies in tumor segmentation using diffusion models [1.7995110894203483]
本稿では,U-Netのようなセグメンテーションモデルの出力と基底真理との相違をモデル化するRe-Diffinetというフレームワークを紹介する。
その結果、Diceスコアの平均0.55%、HD95の平均16.28%が5倍以上のクロスバリデーションで改善された。
論文 参考訳(メタデータ) (2024-02-12T01:03:39Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
人間の事前知識とエンドツーエンドの学習を組み合わせることで、ディープニューラルネットワークの堅牢性を向上させることができることを示す。
我々のモデルは、部分分割モデルと小さな分類器を組み合わせて、オブジェクトを同時に部品に分割するようにエンドツーエンドに訓練されている。
実験の結果,これらのモデルによりテクスチャバイアスが低減され,一般的な汚職に対する堅牢性が向上し,相関が急上昇することが示唆された。
論文 参考訳(メタデータ) (2022-09-15T15:41:47Z) - Efficient Non-Sampling Knowledge Graph Embedding [21.074002550338296]
効率的な非サンプリング型知識グラフ埋め込み (NS-KGE) のための新しいフレームワークを提案する。
基本的な考え方は、モデル学習のためのkgの負のインスタンスをすべて考慮し、負のサンプリングを避けることである。
ベンチマークデータセットの実験により、NS-KGEフレームワークは従来の負サンプリングベースモデルよりも効率と正確性を向上できることが示された。
論文 参考訳(メタデータ) (2021-04-21T23:36:39Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。