Agent-centric Information Access
- URL: http://arxiv.org/abs/2502.19298v1
- Date: Wed, 26 Feb 2025 16:56:19 GMT
- Title: Agent-centric Information Access
- Authors: Evangelos Kanoulas, Panagiotis Eustratiadis, Yongkang Li, Yougang Lyu, Vaishali Pal, Gabrielle Poerwawinata, Jingfen Qiao, Zihan Wang,
- Abstract summary: Large language models (LLMs) become more specialized, each trained on proprietary data and excelling in specific domains.<n>This paper introduces a framework for agent-centric information access, where LLMs function as knowledge agents that are dynamically ranked and queried based on their demonstrated expertise.<n>We propose a scalable evaluation framework that leverages retrieval-augmented generation and clustering techniques to construct and assess thousands of specialized models, with the potential to scale toward millions.
- Score: 21.876205078570507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) become more specialized, we envision a future where millions of expert LLMs exist, each trained on proprietary data and excelling in specific domains. In such a system, answering a query requires selecting a small subset of relevant models, querying them efficiently, and synthesizing their responses. This paper introduces a framework for agent-centric information access, where LLMs function as knowledge agents that are dynamically ranked and queried based on their demonstrated expertise. Unlike traditional document retrieval, this approach requires inferring expertise on the fly, rather than relying on static metadata or predefined model descriptions. This shift introduces several challenges, including efficient expert selection, cost-effective querying, response aggregation across multiple models, and robustness against adversarial manipulation. To address these issues, we propose a scalable evaluation framework that leverages retrieval-augmented generation and clustering techniques to construct and assess thousands of specialized models, with the potential to scale toward millions.
Related papers
- MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
We introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios.
We propose three tasks to assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity.
arXiv Detail & Related papers (2025-03-11T05:02:03Z) - Dynamic Multi-Agent Orchestration and Retrieval for Multi-Source Question-Answer Systems using Large Language Models [0.0]
We propose a methodology that combines several advanced techniques in Large Language Model (LLM) retrieval to support the development of robust, multi-source question-answer systems.<n>This methodology is designed to integrate information from diverse data sources, through a coordinated multi-agent orchestration and dynamic retrieval approach.<n>Our results indicate that this approach enhances response accuracy and relevance, offering a versatile and scalable framework for developing question-answer systems.
arXiv Detail & Related papers (2024-12-23T20:28:20Z) - Personalized Multimodal Large Language Models: A Survey [127.9521218125761]
Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities.<n>This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications.
arXiv Detail & Related papers (2024-12-03T03:59:03Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - DORIS-MAE: Scientific Document Retrieval using Multi-level Aspect-based
Queries [2.4816250611120547]
We propose a novel task, Scientific DOcument Retrieval using Multi-level Aspect-based quEries (DORIS-MAE)
For each complex query, we assembled a collection of 100 relevant documents and produced annotated relevance scores for ranking them.
Anno-GPT is a framework for validating the performance of Large Language Models (LLMs) on expert-level dataset annotation tasks.
arXiv Detail & Related papers (2023-10-07T03:25:06Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - Getting MoRE out of Mixture of Language Model Reasoning Experts [71.61176122960464]
We propose a Mixture-of-Reasoning-Experts (MoRE) framework that ensembles diverse specialized language models.
We specialize the backbone language model with prompts optimized for different reasoning categories, including factual, multihop, mathematical, and commonsense reasoning.
Our human study confirms that presenting expert predictions and the answer selection process helps annotators more accurately calibrate when to trust the system's output.
arXiv Detail & Related papers (2023-05-24T02:00:51Z) - Self-Prompting Large Language Models for Zero-Shot Open-Domain QA [67.08732962244301]
Open-Domain Question Answering (ODQA) aims to answer questions without explicitly providing background documents.
This task becomes notably challenging in a zero-shot setting where no data is available to train tailored retrieval-reader models.
We propose a Self-Prompting framework to explicitly utilize the massive knowledge encoded in the parameters of Large Language Models.
arXiv Detail & Related papers (2022-12-16T18:23:43Z) - MetaQA: Combining Expert Agents for Multi-Skill Question Answering [49.35261724460689]
We argue that despite the promising results of multi-dataset models, some domains or QA formats might require specific architectures.
We propose to combine expert agents with a novel, flexible, and training-efficient architecture that considers questions, answer predictions, and answer-prediction confidence scores.
arXiv Detail & Related papers (2021-12-03T14:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.