Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering
- URL: http://arxiv.org/abs/2409.00082v1
- Date: Sat, 24 Aug 2024 19:34:04 GMT
- Title: Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering
- Authors: Sagar Srinivas Sakhinana, Geethan Sannidhi, Venkataramana Runkana,
- Abstract summary: In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance. Recent advancements in Generative AI, such as Large Multimodal Models (LMMs) like GPT4 (Omni), have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA). However, proprietary models pose data privacy risks, and their computational complexity prevents knowledge editing for domain-specific customization on consumer hardware. To overcome these challenges, we propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework for open-domain question answering (ODQA) tasks, offering enhanced data privacy, explainability, and cost-effectiveness. Our novel multi-agent framework employs introspective and specialized sub-agents using open-source, small-scale multimodal models with the ReAct (Reason+Act) prompting technique for PFD and P&ID analysis, integrating multiple information sources to provide accurate and contextually relevant answers. Our approach, supported by iterative self-correction, aims to deliver superior performance in ODQA tasks. We conducted rigorous experimental studies, and the empirical results validated the proposed approach effectiveness.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Adaptive Stream Processing on Edge Devices through Active Inference [5.5676731834895765]
We present a novel Machine Learning paradigm based on Active Inference (AIF)
AIF describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
Our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
arXiv Detail & Related papers (2024-09-26T15:12:41Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.
Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.
We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.
Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - Multi-agent Planning using Visual Language Models [2.2369578015657954]
Large Language Models (LLMs) and Visual Language Models (VLMs) are attracting increasing interest due to their improving performance and applications across various domains and tasks.
LLMs andVLMs can produce erroneous results, especially when a deep understanding of the problem domain is required.
We propose a multi-agent architecture for embodied task planning that operates without the need for specific data structures as input.
arXiv Detail & Related papers (2024-08-10T08:10:17Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM)
Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys.
arXiv Detail & Related papers (2024-07-13T22:46:02Z) - PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods [9.604121358026303]
GPT-4 shows notable potential but faces the critical tri-lemma of performance, cost, and data privacy.
We introduce the PEER (Plan, Execute, Express, Review) multi-agent framework.
This systematizes domain-specific tasks by integrating precise question decomposition, advanced information retrieval, comprehensive summarization, and rigorous self-assessment.
arXiv Detail & Related papers (2024-07-09T15:59:28Z) - Multi-Agent VQA: Exploring Multi-Agent Foundation Models in Zero-Shot Visual Question Answering [48.7363941445826]
We propose an adaptive multi-agent system, named Multi-Agent VQA, to overcome the limitations of foundation models in object detection and counting.
We present preliminary experimental results under zero-shot scenarios and highlight some failure cases, offering new directions for future research.
arXiv Detail & Related papers (2024-03-21T18:57:25Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
arXiv Detail & Related papers (2023-07-24T08:58:25Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.