論文の概要: CoopDETR: A Unified Cooperative Perception Framework for 3D Detection via Object Query
- arxiv url: http://arxiv.org/abs/2502.19313v1
- Date: Wed, 26 Feb 2025 17:09:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:57:23.739553
- Title: CoopDETR: A Unified Cooperative Perception Framework for 3D Detection via Object Query
- Title(参考訳): CoopDETR:オブジェクトクエリによる3次元検出のための統合協調認識フレームワーク
- Authors: Zhe Wang, Shaocong Xu, Xucai Zhuang, Tongda Xu, Yan Wang, Jingjing Liu, Yilun Chen, Ya-Qin Zhang,
- Abstract要約: CoopDETRは、オブジェクトクエリを介してオブジェクトレベルの特徴協調を導入する新しい協調認識フレームワークである。
本フレームワークは,オブジェクトクエリに生センサデータを効率的にエンコードする単一エージェントクエリ生成と,クロスエージェントクエリ融合という2つの重要なモジュールで構成されている。
OPV2VとV2XSetデータセットの実験により、CoopDETRは最先端の性能を達成し、送信コストを従来手法の1/782に大幅に削減した。
- 参考スコア(独自算出の注目度): 21.010741892266136
- License:
- Abstract: Cooperative perception enhances the individual perception capabilities of autonomous vehicles (AVs) by providing a comprehensive view of the environment. However, balancing perception performance and transmission costs remains a significant challenge. Current approaches that transmit region-level features across agents are limited in interpretability and demand substantial bandwidth, making them unsuitable for practical applications. In this work, we propose CoopDETR, a novel cooperative perception framework that introduces object-level feature cooperation via object query. Our framework consists of two key modules: single-agent query generation, which efficiently encodes raw sensor data into object queries, reducing transmission cost while preserving essential information for detection; and cross-agent query fusion, which includes Spatial Query Matching (SQM) and Object Query Aggregation (OQA) to enable effective interaction between queries. Our experiments on the OPV2V and V2XSet datasets demonstrate that CoopDETR achieves state-of-the-art performance and significantly reduces transmission costs to 1/782 of previous methods.
- Abstract(参考訳): 協調認識は、環境を包括的に把握することで、自律走行車(AV)の個人知覚能力を高める。
しかし、知覚性能と伝送コストのバランスは依然として大きな課題である。
エージェント間で領域レベルの特徴を伝達する現在のアプローチは、解釈可能性に制限があり、かなりの帯域幅を必要とするため、実用的な応用には適さない。
本研究では,オブジェクトクエリによるオブジェクトレベルの特徴協調を実現する新しい協調認識フレームワークであるCoopDETRを提案する。
我々のフレームワークは2つの主要なモジュールから構成されている: 単一エージェントクエリ生成、オブジェクトクエリへの効率的なエンコード、検出に必要な情報を保持しながら送信コストの削減、およびクエリ間の効果的なインタラクションを実現するための空間クエリマッチング(SQM)とオブジェクトクエリ集約(OQA)を含むクロスエージェントクエリ融合。
OPV2V と V2XSet データセットを用いた実験により,CoopDETR が最先端性能を実現し,伝送コストを従来手法の1/782 に大幅に削減できることを示した。
関連論文リスト
- Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
隠れた報酬関数に影響を与える要因をモデルが決定しなければならない枠組みを導入する。
自己スループットや推論時間の増加といったアプローチが情報収集効率を向上させるかどうかを検討する。
論文 参考訳(メタデータ) (2024-12-09T12:27:21Z) - RoCo:Robust Collaborative Perception By Iterative Object Matching and Pose Adjustment [9.817492112784674]
複数の車両との協調自動運転は通常、複数のモードからのデータ融合を必要とする。
協調的な知覚では、モダリティに基づく物体検出の品質は、エージェント間の相対的なポーズ誤差に非常に敏感である。
反復的なオブジェクトマッチングとエージェントポーズ調整を行うための新しい教師なしフレームワークであるRoCoを提案する。
論文 参考訳(メタデータ) (2024-08-01T03:29:33Z) - Spatio-Temporal Domain Awareness for Multi-Agent Collaborative
Perception [18.358998861454477]
車両間通信の潜在的な応用としてのマルチエージェント協調認識は、単一エージェント認識よりも自律走行車の性能知覚を著しく向上させる可能性がある。
本稿では,エージェント間の認識特性をエンドツーエンドに集約する新しい協調認識フレームワークSCOPEを提案する。
論文 参考訳(メタデータ) (2023-07-26T03:00:31Z) - Practical Collaborative Perception: A Framework for Asynchronous and
Multi-Agent 3D Object Detection [9.967263440745432]
咬合は、LiDARベースのオブジェクト検出方法において大きな課題である。
最先端のV2X手法は、中間協調手法を用いて性能帯域幅のトレードオフを解消する。
我々は,従来の方法よりも帯域幅と性能のトレードオフを向上する,シンプルで効果的な協調手法を考案した。
論文 参考訳(メタデータ) (2023-07-04T03:49:42Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
本研究は,アクションクエリを備えたエンコーダ・デコーダフレームワークを用いて,時間的行動検出(TAD)の進展を図ることを目的とする。
まず,デコーダ内の関係注意機構を提案し,その関係に基づいてクエリ間の関心を誘導する。
最後に、高品質なクエリを区別するために、推論時に各アクションクエリのローカライズ品質を予測することを提案する。
論文 参考訳(メタデータ) (2022-07-14T17:46:37Z) - One-Shot Object Affordance Detection in the Wild [76.46484684007706]
Affordance Detectionは、画像内のオブジェクトの潜在的なアクション可能性を特定することを指す。
我々は、人間の行動目的を推定し、それを転送して、すべての候補画像から共通価格を検出するワンショットアフォーダンス検出ネットワーク(OSAD-Net)を考案する。
複雑なシーンと豊富なアノテーションによって、当社のPADv2データセットは、アベイランス検出メソッドをベンチマークするためのテストベッドとして使用することができます。
論文 参考訳(メタデータ) (2021-08-08T14:53:10Z) - Bandwidth-Adaptive Feature Sharing for Cooperative LIDAR Object
Detection [2.064612766965483]
コネクテッド・自動運転車(CAV)領域で必要となる状況認識。
協調機構は、高速無線車載ネットワークを利用して状況認識を改善するソリューションを提供する。
本稿では,通信チャネル容量に適応する柔軟性を付加する機構と,新たな分散共有データアライメント手法を提案する。
論文 参考訳(メタデータ) (2020-10-22T00:12:58Z) - A Co-Interactive Transformer for Joint Slot Filling and Intent Detection [61.109486326954205]
音声言語理解システム(SLU)を構築する上では,インテント検出とスロットフィリングが主要な2つのタスクである。
以前の研究では、2つのタスクを個別にモデル化するか、インテントからスロットへの単一の情報フローのみを考慮していた。
本稿では,2つのタスク間の相互影響を同時に検討するコ・インターアクティブ・トランスフォーマーを提案する。
論文 参考訳(メタデータ) (2020-10-08T10:16:52Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。