CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
- URL: http://arxiv.org/abs/2502.19349v3
- Date: Mon, 31 Mar 2025 15:58:17 GMT
- Title: CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
- Authors: Amit Kumar, Taoran Ji,
- Abstract summary: This paper proposes a dual prediction mechanism that forecasts the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes.<n> Experiments demonstrate that the proposed model achieves state-of-the-art performance, consistently outperforming ten comparison methods.
- Score: 5.925689873653387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryptocurrencies fluctuate in markets with high price volatility, posing significant challenges for investors. To aid in informed decision-making, systems predicting cryptocurrency market movements have been developed, typically focusing on historical patterns. However, these methods often overlook three critical factors influencing market dynamics: 1) the macro investing environment, reflected in major cryptocurrency fluctuations affecting collaborative investor behaviors; 2) overall market sentiment, heavily influenced by news impacting investor strategies; and 3) technical indicators, offering insights into overbought or oversold conditions, momentum, and market trends, which are crucial for short-term price movements. This paper proposes a dual prediction mechanism that forecasts the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes. Additionally, a novel refinement mechanism enhances predictions through market sentiment-based rescaling and fusion. Experiments demonstrate that the proposed model achieves state-of-the-art performance, consistently outperforming ten comparison methods.
Related papers
- CSPO: Cross-Market Synergistic Stock Price Movement Forecasting with Pseudo-volatility Optimization [14.241290261347281]
We introduce the framework of Cross-market Synergy with Pseudo-volatility Optimization (CSPO)
CSPO implements an effective deep neural architecture to leverage external futures knowledge.
CSPO incorporates pseudo-volatility to model stock-specific forecasting confidence.
arXiv Detail & Related papers (2025-03-26T18:58:15Z) - ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market [45.62331048595689]
This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market.
We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models.
Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models.
arXiv Detail & Related papers (2025-03-21T15:21:43Z) - FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
We propose a hybrid model that combines Bidirectional Long Short-Term Memory (Bi-LSTM) networks with FinBERT to enhance forecasting accuracy for cryptocurrencies.
This approach fills a key gap in forecasting volatile financial markets by blending advanced time series models with sentiment analysis.
arXiv Detail & Related papers (2024-11-02T14:43:06Z) - Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
This study presents a machine learning model based on classification to forecast the direction of the cryptocurrency market.
It is trained using historical data and important technical indicators such as the Moving Average Convergence Divergence, the Relative Strength Index, and Bollinger Bands.
The results show a buy/sell signal accuracy of over 92%.
arXiv Detail & Related papers (2024-10-09T14:29:50Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
This study introduces a machine learning approach to predict cryptocurrency prices.
We make use of important technical indicators such as Exponential Moving Average (EMA) and Moving Average Convergence Divergence (MACD) to train and feed the XGBoost regressor model.
We evaluate the model's performance through various simulations, showing promising results.
arXiv Detail & Related papers (2024-07-16T14:41:27Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Dynamic Bayesian Networks for Predicting Cryptocurrency Price Directions: Uncovering Causal Relationships [1.4356611205757077]
Six popular cryptocurrencies, Bitcoin, Coin, Litecoin, Ripple, and Tether are studied in this work.
We propose a dynamic Bayesian network (DBN)-based approach to uncover potential causal relationships among various features including social media data, traditional financial market factors, and technical indicators.
The results show that while DBN performance varies across cryptocurrencies, some cryptocurrencies exhibiting higher predictive accuracy than others, the DBN significantly outperforms the baseline models.
arXiv Detail & Related papers (2023-06-13T22:07:51Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
This paper is inspired by the recent success of using deep learning for stock market prediction.
We analyze and present the characteristics of the cryptocurrency market in a high-frequency setting.
We achieve a consistent $78%$ accuracy on the prediction of the mid-price movement on live exchange rate of Bitcoins vs US dollars.
arXiv Detail & Related papers (2020-02-09T20:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.