CSPO: Cross-Market Synergistic Stock Price Movement Forecasting with Pseudo-volatility Optimization
- URL: http://arxiv.org/abs/2503.22740v1
- Date: Wed, 26 Mar 2025 18:58:15 GMT
- Title: CSPO: Cross-Market Synergistic Stock Price Movement Forecasting with Pseudo-volatility Optimization
- Authors: Sida Lin, Yankai Chen, Yiyan Qi, Chenhao Ma, Bokai Cao, Yifei Zhang, Xue Liu, Jian Guo,
- Abstract summary: We introduce the framework of Cross-market Synergy with Pseudo-volatility Optimization (CSPO)<n>CSPO implements an effective deep neural architecture to leverage external futures knowledge.<n>CSPO incorporates pseudo-volatility to model stock-specific forecasting confidence.
- Score: 14.241290261347281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stock market, as a cornerstone of the financial markets, places forecasting stock price movements at the forefront of challenges in quantitative finance. Emerging learning-based approaches have made significant progress in capturing the intricate and ever-evolving data patterns of modern markets. With the rapid expansion of the stock market, it presents two characteristics, i.e., stock exogeneity and volatility heterogeneity, that heighten the complexity of price forecasting. Specifically, while stock exogeneity reflects the influence of external market factors on price movements, volatility heterogeneity showcases the varying difficulty in movement forecasting against price fluctuations. In this work, we introduce the framework of Cross-market Synergy with Pseudo-volatility Optimization (CSPO). Specifically, CSPO implements an effective deep neural architecture to leverage external futures knowledge. This enriches stock embeddings with cross-market insights and thus enhances the CSPO's predictive capability. Furthermore, CSPO incorporates pseudo-volatility to model stock-specific forecasting confidence, enabling a dynamic adaptation of its optimization process to improve accuracy and robustness. Our extensive experiments, encompassing industrial evaluation and public benchmarking, highlight CSPO's superior performance over existing methods and effectiveness of all proposed modules contained therein.
Related papers
- CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators [5.925689873653387]
This paper proposes a dual prediction mechanism that forecasts the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes.<n> Experiments demonstrate that the proposed model achieves state-of-the-art performance, consistently outperforming ten comparison methods.
arXiv Detail & Related papers (2025-02-26T17:45:01Z) - Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.<n>This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.<n>We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - GRUvader: Sentiment-Informed Stock Market Prediction [0.0]
This study compared several machine learning algorithms for stock market prediction and further examined the influence of a sentiment analysis indicator on the prediction of stock prices.<n>Our findings suggest that stand-alone models struggled compared with AI-enhanced models.
arXiv Detail & Related papers (2024-12-07T04:56:17Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics.
The study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns.
The meticulously crafted LSTM incorporates crucial price and volume attributes over a 25-day time step.
arXiv Detail & Related papers (2023-12-09T07:53:25Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.