Modelling Chemical Reaction Networks using Neural Ordinary Differential Equations
- URL: http://arxiv.org/abs/2502.19397v1
- Date: Tue, 11 Feb 2025 10:10:33 GMT
- Title: Modelling Chemical Reaction Networks using Neural Ordinary Differential Equations
- Authors: Anna C. M. Thöni, William E. Robinson, Yoram Bachrach, Wilhelm T. S. Huck, Tal Kachman,
- Abstract summary: In chemical reaction network theory, ordinary differential equations are used to model the temporal change of chemical species concentration.<n>Our approach aims to elucidate these hidden insights in the reaction network by combining dynamic modelling with deep learning in the form of neural ordinary differential equations.
- Score: 6.1947324899410745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In chemical reaction network theory, ordinary differential equations are used to model the temporal change of chemical species concentration. As the functional form of these ordinary differential equations systems is derived from an empirical model of the reaction network, it may be incomplete. Our approach aims to elucidate these hidden insights in the reaction network by combining dynamic modelling with deep learning in the form of neural ordinary differential equations. Our contributions not only help to identify the shortcomings of existing empirical models but also assist the design of future reaction networks.
Related papers
- Symbolic Neural Ordinary Differential Equations [11.69943926220929]
We propose a novel learning framework of symbolic continuous-depth neural networks, termed Symbolic Neural Ordinary Differential Equations (SNODEs)
Our framework can be further applied to a wide range of scientific problems, such as system bifurcation and control, reconstruction and forecasting, as well as the discovery of new equations.
arXiv Detail & Related papers (2025-03-11T05:38:22Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.<n>Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.<n>Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlign is a novel chemical reaction representation learning model for various organic reaction-related tasks.<n>By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction.<n>We introduce a reaction-center-aware attention mechanism that enables the model to concentrate on key functional groups.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - Fourier Neural Differential Equations for learning Quantum Field
Theories [57.11316818360655]
A Quantum Field Theory is defined by its interaction Hamiltonian, and linked to experimental data by the scattering matrix.
In this paper, NDE models are used to learn theory, Scalar-Yukawa theory and Scalar Quantum Electrodynamics.
The interaction Hamiltonian of a theory can be extracted from network parameters.
arXiv Detail & Related papers (2023-11-28T22:11:15Z) - Pseudo-Hamiltonian neural networks for learning partial differential
equations [0.0]
Pseudo-Hamiltonian neural networks (PHNN) were recently introduced for learning dynamical systems that can be modelled by ordinary differential equations.
In this paper, we extend the method to partial differential equations.
The resulting model is comprised of up to three neural networks, modelling terms representing conservation, dissipation and external forces, and discrete convolution operators that can either be learned or be given as input.
arXiv Detail & Related papers (2023-04-27T17:46:00Z) - Differentiable Programming of Chemical Reaction Networks [63.948465205530916]
Chemical reaction networks are one of the most fundamental computational substrates used by nature.
We study well-mixed single-chamber systems, as well as systems with multiple chambers separated by membranes.
We demonstrate that differentiable optimisation, combined with proper regularisation, can discover non-trivial sparse reaction networks.
arXiv Detail & Related papers (2023-02-06T11:41:14Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Climate Modeling with Neural Diffusion Equations [3.8521112392276]
We design a novel climate model based on the neural ordinary differential equation (NODE) and the diffusion equation.
Our method consistently outperforms existing baselines by non-trivial margins.
arXiv Detail & Related papers (2021-11-11T01:48:46Z) - Kinetics-Informed Neural Networks [0.0]
We use feed-forward artificial neural networks as basis functions for the construction of surrogate models to solve ordinary differential equations.
We show that the simultaneous training of neural nets and kinetic model parameters in a regularized multiobjective optimization setting leads to the solution of the inverse problem.
This surrogate approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.
arXiv Detail & Related papers (2020-11-30T00:07:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.