No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
- URL: http://arxiv.org/abs/2501.18563v1
- Date: Thu, 30 Jan 2025 18:36:48 GMT
- Title: No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
- Authors: Krzysztof Kacprzyk, Mihaela van der Schaar,
- Abstract summary: This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
- Score: 56.78271181959529
- License:
- Abstract: Data-driven modeling of dynamical systems is a crucial area of machine learning. In many scenarios, a thorough understanding of the model's behavior becomes essential for practical applications. For instance, understanding the behavior of a pharmacokinetic model, constructed as part of drug development, may allow us to both verify its biological plausibility (e.g., the drug concentration curve is non-negative and decays to zero) and to design dosing guidelines. Discovery of closed-form ordinary differential equations (ODEs) can be employed to obtain such insights by finding a compact mathematical equation and then analyzing it (a two-step approach). However, its widespread use is currently hindered because the analysis process may be time-consuming, requiring substantial mathematical expertise, or even impossible if the equation is too complex. Moreover, if the found equation's behavior does not satisfy the requirements, editing it or influencing the discovery algorithms to rectify it is challenging as the link between the symbolic form of an ODE and its behavior can be elusive. This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process. Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system (i.e., description of its behavior) directly from data, bypassing the need for complex post-hoc analysis. This direct approach also allows the incorporation of intuitive inductive biases into the optimization algorithm and editing the model's behavior directly, ensuring that the model meets the desired specifications. Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models compared to traditional closed-form ODEs.
Related papers
- ICODE: Modeling Dynamical Systems with Extrinsic Input Information [14.521146920900316]
We introduce emph Input Concomitant Neural ODEs (ICODEs), which incorporate precise real-time input information into the learning process of the models.
We validate our method through experiments on several representative real dynamics.
This work offers a valuable class of neural ODE models for understanding physical systems with explicit external input information.
arXiv Detail & Related papers (2024-11-21T07:57:59Z) - Physically Analyzable AI-Based Nonlinear Platoon Dynamics Modeling During Traffic Oscillation: A Koopman Approach [4.379212829795889]
There exists a critical need for a modeling methodology with high accuracy while concurrently achieving physical analyzability.
This paper proposes an AI-based Koopman approach to model the unknown nonlinear platoon dynamics harnessing the power of AI.
arXiv Detail & Related papers (2024-06-20T19:35:21Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - Neural Abstractions [72.42530499990028]
We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.
We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.
arXiv Detail & Related papers (2023-01-27T12:38:09Z) - Discrepancy Modeling Framework: Learning missing physics, modeling
systematic residuals, and disambiguating between deterministic and random
effects [4.459306403129608]
In modern dynamical systems, discrepancies between model and measurement can lead to poor quantification.
We introduce a discrepancy modeling framework to identify the missing physics and resolve the model-measurement mismatch.
arXiv Detail & Related papers (2022-03-10T05:37:24Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
We blend machine learning and dictionary-based learning with numerical analysis tools to discover governing differential equations.
We obtain interpretable and parsimonious models which are prone to generalize better beyond the sampling regime.
We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks.
arXiv Detail & Related papers (2021-05-11T08:46:51Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
We propose a new regularization technique: randomly sampling the end time of the ODE during training.
The proposed regularization is simple to implement, has negligible overhead and is effective across a wide variety of tasks.
We show through experiments on normalizing flows, time series models and image recognition that the proposed regularization can significantly decrease training time and even improve performance over baseline models.
arXiv Detail & Related papers (2020-06-18T17:44:50Z) - Data-Driven Discovery of Coarse-Grained Equations [0.0]
Multiscale modeling and simulations are two areas where learning on simulated data can lead to such discovery.
We replace the human discovery of such models with a machine-learning strategy based on sparse regression that can be executed in two modes.
A series of examples demonstrates the accuracy, robustness, and limitations of our approach to equation discovery.
arXiv Detail & Related papers (2020-01-30T23:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.