Single-shot and two-shot decoding with generalized bicycle codes
- URL: http://arxiv.org/abs/2502.19406v2
- Date: Fri, 28 Mar 2025 20:34:15 GMT
- Title: Single-shot and two-shot decoding with generalized bicycle codes
- Authors: Hsiang-Ku Lin, Xingrui Liu, Pak Kau Lim, Leonid P. Pryadko,
- Abstract summary: Generalized-bicycle (GB) quantum error-correcting codes have naturally redundant minimum-weight stabilizer generators.<n>We constructed several short GB codes with relatively large dimensions, distances, and syndrome, also admitting fault-tolerant near-time-optimal syndrome measurement schedules.
- Score: 0.027042267806481293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized-bicycle (GB) quantum error-correcting codes have naturally redundant minimum-weight stabilizer generators. To use this redundancy, we constructed several short GB codes with relatively large dimensions, distances, and syndrome distances, also admitting fault-tolerant near-time-optimal syndrome measurement schedules. We simulated their performance both under phenomenological noise and standard circuit noise, using sliding window sequential decoding protocol covering $T\ge 1$ measurement rounds at a time, based on an in-house binary BP+OSD decoder. While true single-shot decoding ($T=1$) may suffer from a significant loss of accuracy, already two-shot ($T=2$) decoding gives nearly the same logical error rates as multi-shot with much larger $T$. Comparison with the same codes but redundant stabilizer generators dropped show significantly improved decoding accuracy for all $T\ge1$.
Related papers
- Machine Learning Decoding of Circuit-Level Noise for Bivariate Bicycle Codes [0.42542143904778074]
We present a recurrent, transformer-based neural network designed to decode circuit-level noise on Bi Bicycle (BB) codes.
For the $[[72,12,6]]$ BB code, at a physical error rate of $p=0.1%$, our model achieves a logical error rate almost $5$ times lower than belief propagation.
These results demonstrate that machine learning decoders can out-perform conventional decoders on QLDPC codes.
arXiv Detail & Related papers (2025-04-17T15:57:16Z) - Efficient and Universal Neural-Network Decoder for Stabilizer-Based Quantum Error Correction [44.698141103370546]
We introduce a universal decoder based on linear attention sequence modeling and graph neural network.
Our experiments demonstrate that this decoder outperforms specialized algorithms in both accuracy and speed.
arXiv Detail & Related papers (2025-02-27T10:56:53Z) - High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory [0.6144680854063939]
We present a new family of quantum low-density parity-check codes, which we call radial codes.
In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance.
Their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices.
arXiv Detail & Related papers (2024-06-20T16:08:06Z) - The closed-branch decoder for quantum LDPC codes [0.0]
Real-time decoding is a necessity for implementing arbitrary quantum computations on the logical level.
We present a new decoder for Quantum Low Density Parity Check (QLDPC) codes, named the closed-branch decoder.
arXiv Detail & Related papers (2024-02-02T16:22:32Z) - Estimating the Decoding Failure Rate of Binary Regular Codes Using Iterative Decoding [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.<n>We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - Generalized quantum data-syndrome codes and belief propagation decoding for phenomenological noise [6.322831694506286]
We introduce quantum data-syndrome codes along with a generalized check matrix that integrates both quaternary and binary alphabets to represent diverse error sources.<n>We observe that at high error rates, fewer rounds of syndrome extraction tend to perform better, while more rounds improve performance at lower error rates.
arXiv Detail & Related papers (2023-10-19T12:23:05Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Scalable Quantum Error Correction for Surface Codes using FPGA [67.74017895815125]
A fault-tolerant quantum computer must decode and correct errors faster than they appear.
We report a distributed version of the Union-Find decoder that exploits parallel computing resources for further speedup.
The implementation employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid tree-grid structure.
arXiv Detail & Related papers (2023-01-20T04:23:00Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) matches pedestrians across disjoint cameras.
Existing ReID methods adopting real-value feature descriptors have achieved high accuracy, but they are low in efficiency due to the slow Euclidean distance computation.
We propose a novel Sub-space Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by 0.25$ times.
arXiv Detail & Related papers (2022-07-13T02:44:05Z) - Distance bounds for generalized bicycle codes [0.7513100214864644]
Generalized bicycle (GB) codes is a class of quantum error-correcting codes constructed from a pair of binary circulant matrices.
We have done an exhaustive enumeration of GB codes for certain prime circulant sizes in a family of two-qubit encoding codes with row weights 4, 6, and 8.
The observed distance scaling is consistent with $A(w)n1/2+B(w)$, where $n$ is the code length and $A(w)$ is increasing with $w$.
arXiv Detail & Related papers (2022-03-31T17:43:34Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Instantaneous Grammatical Error Correction with Shallow Aggressive
Decoding [57.08875260900373]
We propose Shallow Aggressive Decoding (SAD) to improve the online inference efficiency of the Transformer for instantaneous Grammatical Error Correction (GEC)
SAD aggressively decodes as many tokens as possible in parallel instead of always decoding only one token in each step to improve computational parallelism.
Experiments in both English and Chinese GEC benchmarks show that aggressive decoding could yield the same predictions but with a significant speedup for online inference.
arXiv Detail & Related papers (2021-06-09T10:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.