SPU-IMR: Self-supervised Arbitrary-scale Point Cloud Upsampling via Iterative Mask-recovery Network
- URL: http://arxiv.org/abs/2502.19452v1
- Date: Wed, 26 Feb 2025 06:35:25 GMT
- Title: SPU-IMR: Self-supervised Arbitrary-scale Point Cloud Upsampling via Iterative Mask-recovery Network
- Authors: Ziming Nie, Qiao Wu, Chenlei Lv, Siwen Quan, Zhaoshuai Qi, Muze Wang, Jiaqi Yang,
- Abstract summary: Point cloud upsampling aims to generate dense and uniformly distributed point sets from sparse point clouds.<n>Existing point cloud upsampling methods typically approach the task as a problem.<n>By contrast, our proposed method treats point cloud upsampling as a global shape completion problem.
- Score: 8.556168477059925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud upsampling aims to generate dense and uniformly distributed point sets from sparse point clouds. Existing point cloud upsampling methods typically approach the task as an interpolation problem. They achieve upsampling by performing local interpolation between point clouds or in the feature space, then regressing the interpolated points to appropriate positions. By contrast, our proposed method treats point cloud upsampling as a global shape completion problem. Specifically, our method first divides the point cloud into multiple patches. Then, a masking operation is applied to remove some patches, leaving visible point cloud patches. Finally, our custom-designed neural network iterative completes the missing sections of the point cloud through the visible parts. During testing, by selecting different mask sequences, we can restore various complete patches. A sufficiently dense upsampled point cloud can be obtained by merging all the completed patches. We demonstrate the superior performance of our method through both quantitative and qualitative experiments, showing overall superiority against both existing self-supervised and supervised methods.
Related papers
- ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors [52.72867922938023]
3D point clouds directly collected from objects through sensors are often incomplete due to self-occlusion.<n>We propose a test-time framework for completing partial point clouds across unseen categories without any requirement for training.
arXiv Detail & Related papers (2024-04-10T08:02:17Z) - Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
Point cloud upsampling aims to generate dense and uniformly distributed point sets from a sparse point cloud.
Previous methods typically split a sparse point cloud into several local patches, upsample patch points, and merge all upsampled patches.
We propose a novel approach that learns an unsigned distance field guided by local priors for point cloud upsampling.
arXiv Detail & Related papers (2023-12-23T01:52:14Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
We propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates.
Our method first interpolates the low-res point cloud according to a given upsampling rate.
arXiv Detail & Related papers (2023-04-24T06:36:35Z) - HybridFusion: LiDAR and Vision Cross-Source Point Cloud Fusion [15.94976936555104]
We propose a cross-source point cloud fusion algorithm called HybridFusion.
It can register cross-source dense point clouds from different viewing angle in outdoor large scenes.
The proposed approach is evaluated comprehensively through qualitative and quantitative experiments.
arXiv Detail & Related papers (2023-04-10T10:54:54Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - High-Fidelity Point Cloud Completion with Low-Resolution Recovery and
Noise-Aware Upsampling [7.1930172833530195]
We propose to decode and refine a low-resolution (low-res) point cloud first.
After obtaining a sparse and complete point cloud, we propose a patch-wise upsampling strategy.
arXiv Detail & Related papers (2021-12-21T14:51:52Z) - SSPU-Net: Self-Supervised Point Cloud Upsampling via Differentiable
Rendering [21.563862632172363]
We propose a self-supervised point cloud upsampling network (SSPU-Net) to generate dense point clouds without using ground truth.
To achieve this, we exploit the consistency between the input sparse point cloud and generated dense point cloud for the shapes and rendered images.
arXiv Detail & Related papers (2021-08-01T13:26:01Z) - Self-Sampling for Neural Point Cloud Consolidation [83.31236364265403]
We introduce a novel technique for neural point cloud consolidation which learns from only the input point cloud.
We repeatedly self-sample the input point cloud with global subsets that are used to train a deep neural network.
We demonstrate the ability to consolidate point sets from a variety of shapes, while eliminating outliers and noise.
arXiv Detail & Related papers (2020-08-14T17:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.